Abstract

BACKGROUND AND OBJECTIVE: Neonatal respiratory distress syndrome (RDS) due to pulmonary surfactant deficiency is heritable, but common variants do not fully explain disease heritability. METHODS: Using next-generation, pooled sequencing of race-stratified DNA samples from infants ≥34 weeks' gestation with and without RDS (n = 513) and from a Missouri population-based cohort (n = 1066), we scanned all exons of 5 surfactant-associated genes and used in silico algorithms to identify functional mutations. We validated each mutation with an independent genotyping platform and compared race-stratified, collapsed frequencies of rare mutations by gene to investigate disease associations and estimate attributable risk. RESULTS: Single ABCA3 mutations were overrepresented among European-descent RDS infants (14.3% of RDS vs 3.7% of non-RDS; P = .002) but were not statistically overrepresented among African-descent RDS infants (4.5% of RDS vs 1.5% of non-RDS; P = .23). In the Missouri population-based cohort, 3.6% of European-descent and 1.5% of African-descent infants carried a single ABCA3 mutation. We found no mutations among the RDS infants and no evidence of contribution to population-based disease burden for SFTPC, CHPT1, LPCAT1, or PCYT1B. CONCLUSIONS: In contrast to lethal neonatal RDS resulting from homozygous or compound heterozygous ABCA3 mutations, single ABCA3 mutations are overrepresented among European-descent infants ≥34 weeks' gestation with RDS and account for ∼10.9% of the attributable risk among term and late preterm infants. Although ABCA3 mutations are individually rare, they are collectively common among European-and African-descent individuals in the general population.

Original languageEnglish
Pages (from-to)e1575-e1582
JournalPediatrics
Volume130
Issue number6
DOIs
StatePublished - Dec 2012

Keywords

  • Genetic association studies
  • Neonatal respiratory distress syndrome
  • Newborn
  • Respiratory distress syndrome

Fingerprint

Dive into the research topics of 'Single ABCA3 mutations increase risk for neonatal respiratory distress syndrome'. Together they form a unique fingerprint.

Cite this