TY - GEN
T1 - Simulation of brain mass effect with an arbitrary Lagrangian and Eulerian FEM
AU - Chen, Yasheng
AU - Ji, Songbai
AU - Wu, Xunlei
AU - An, Hongyu
AU - Zhu, Hongtu
AU - Shen, Dinggang
AU - Lin, Weili
PY - 2010
Y1 - 2010
N2 - Estimation of intracranial stress distribution caused by mass effect is critical to the management of hemorrhagic stroke or brain tumor patients, who may suffer severe secondary brain injury from brain tissue compression. Coupling with physiological parameters that are readily available using MRI, eg, tissue perfusion, a non-invasive, quantitative and regional estimation of intracranial stress distribution could offer a better understanding of brain tissue's reaction under mass effect. A quantitative and sound measurement serving this particular purpose remains elusive due to multiple challenges associated with biomechanical modeling of the brain. One such challenge for the conventional Lagrangian frame based finite element method (LFEM) is that the mesh distortion resulted from the expansion of the mass effects can terminate the simulation prematurely before the desired pressure loading is achieved. In this work, we adopted an arbitrary Lagrangian and Eulerian FEM method (ALEF) with explicit dynamic solutions to simulate the expansion of brain mass effects caused by a pressure loading. This approach consists of three phases: 1) a Lagrangian phase to deform mesh like LFEM, 2) a mesh smoothing phase to reduce mesh distortion, and 3) an Eulerian phase to map the state variables from the old mesh to the smoothed one. In 2D simulations with simulated geometries, this approach is able to model substantially larger deformations compared to LFEM. We further applied this approach to a simulation with 3D real brain geometry to quantify the distribution of von Mises stress within the brain.
AB - Estimation of intracranial stress distribution caused by mass effect is critical to the management of hemorrhagic stroke or brain tumor patients, who may suffer severe secondary brain injury from brain tissue compression. Coupling with physiological parameters that are readily available using MRI, eg, tissue perfusion, a non-invasive, quantitative and regional estimation of intracranial stress distribution could offer a better understanding of brain tissue's reaction under mass effect. A quantitative and sound measurement serving this particular purpose remains elusive due to multiple challenges associated with biomechanical modeling of the brain. One such challenge for the conventional Lagrangian frame based finite element method (LFEM) is that the mesh distortion resulted from the expansion of the mass effects can terminate the simulation prematurely before the desired pressure loading is achieved. In this work, we adopted an arbitrary Lagrangian and Eulerian FEM method (ALEF) with explicit dynamic solutions to simulate the expansion of brain mass effects caused by a pressure loading. This approach consists of three phases: 1) a Lagrangian phase to deform mesh like LFEM, 2) a mesh smoothing phase to reduce mesh distortion, and 3) an Eulerian phase to map the state variables from the old mesh to the smoothed one. In 2D simulations with simulated geometries, this approach is able to model substantially larger deformations compared to LFEM. We further applied this approach to a simulation with 3D real brain geometry to quantify the distribution of von Mises stress within the brain.
KW - ALEF
KW - brain mechanics
KW - intracranial stress estimation
KW - mass effect
UR - http://www.scopus.com/inward/record.url?scp=84879527628&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-15745-5_34
DO - 10.1007/978-3-642-15745-5_34
M3 - Conference contribution
C2 - 20879325
AN - SCOPUS:84879527628
SN - 3642157440
SN - 9783642157448
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 274
EP - 281
BT - Medical Image Computing and Computer-Assisted Intervention, MICCAI2010 - 13th International Conference, Proceedings
T2 - 13th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2010
Y2 - 20 September 2010 through 24 September 2010
ER -