Abstract
Magnetoferritin nanoparticles have been developed as high-relaxivity, functional contrast agents for MRI. Several previous techniques have relied on unloading native ferritin and re-incorporation of iron into the core, often resulting in a polydisperse sample. Here, a simplified technique is developed using commercially available horse spleen apoferritin to create monodisperse magnetoferritin. Iron oxide atoms were incorporated into the protein core via a step-wise Fe(II)Chloride addition to the protein solution under low O 2 conditions; subsequent filtration steps allow for separation of completely filled and superparamagnetic magnetoferritin from the partially filled ferritin. This method yields a monodisperse and homogenous solution of spherical particles with magnetic properties that can be used for molecular magnetic resonance imaging. With a transverse per-iron and per-particle relaxivity of 78 mM-1 sec-1 and 404,045 mM-1 sec-1, respectively, it is possible to detect ∼10 nM nanoparticle concentrations in vivo.
Original language | English |
---|---|
Pages (from-to) | 1260-1266 |
Number of pages | 7 |
Journal | Magnetic resonance in medicine |
Volume | 64 |
Issue number | 5 |
DOIs | |
State | Published - Nov 2010 |
Keywords
- Ferritin
- MRI
- Magnetoferritin
- Molecular imaging