TY - JOUR
T1 - Sigma-2 ligands induce tumour cell death by multiple signalling pathways
AU - Zeng, C.
AU - Rothfuss, J.
AU - Zhang, J.
AU - Chu, W.
AU - Vangveravong, S.
AU - Tu, Z.
AU - Pan, F.
AU - Chang, K. C.
AU - Hotchkiss, R.
AU - Mach, R. H.
N1 - Funding Information:
We thank Marilyn Levy in the Cell Biology and Physiology Electron Microscopy Facility for assistance. We also thank our colleague Lynne A Jones for outstanding editorial assistance. This work was supported by grant CA102869 awarded by the National Cancer Institute and GM 44118 by the National Institute of General Medical Sciences.
PY - 2012/2/14
Y1 - 2012/2/14
N2 - BACKGROUND: The sigma-2 receptor has been identified as a biomarker of proliferating cells in solid tumours. In the present study, we studied the mechanisms of sigma-2 ligand-induced cell death in the mouse breast cancer cell line EMT-6 and the human melanoma cell line MDA-MB-435. METHODS: EMT-6 and MDA-MB-435 cells were treated with sigma-2 ligands. The modulation of multiple signaling pathways of cell death was evaluated. RESULTS: Three sigma-2 ligands (WC-26, SV119 and RHM-138) induced DNA fragmentation, caspase-3 activation and PARP-1 cleavage. The caspase inhibitor Z-VAD-FMK partially blocked DNA fragmentation and cytotoxicity caused by these compounds. These data suggest that sigma-2 ligand-induced apoptosis and caspase activation are partially responsible for the cell death. WC-26 and siramesine induced formation of vacuoles in the cells. WC-26, SV119, RHM-138 and siramesine increased the synthesis and processing of microtubule-associated protein light chain 3, an autophagosome marker, and decreased the expression levels of the downstream effectors of mammalian target of rapamycin (mTOR), p70S6K and 4EBP1, suggesting that sigma-2 ligands induce autophagy, probably by inhibition of the mTOR pathway. All four sigma-2 ligands decreased the expression of cyclin D1 in a time-dependent manner. In addition, WC-26 and SV119 mainly decreased cyclin B1, E2 and phosphorylation of retinoblastoma protein (pRb); RHM-138 mainly decreased cyclin E2; and 10 M siramesine mainly decreased cyclin B1 and pRb. These data suggest that sigma-2 ligands also impair cell-cycle progression in multiple phases of the cell cycle. CONCLUSION: Sigma-2 ligands induce cell death by multiple signalling pathways.
AB - BACKGROUND: The sigma-2 receptor has been identified as a biomarker of proliferating cells in solid tumours. In the present study, we studied the mechanisms of sigma-2 ligand-induced cell death in the mouse breast cancer cell line EMT-6 and the human melanoma cell line MDA-MB-435. METHODS: EMT-6 and MDA-MB-435 cells were treated with sigma-2 ligands. The modulation of multiple signaling pathways of cell death was evaluated. RESULTS: Three sigma-2 ligands (WC-26, SV119 and RHM-138) induced DNA fragmentation, caspase-3 activation and PARP-1 cleavage. The caspase inhibitor Z-VAD-FMK partially blocked DNA fragmentation and cytotoxicity caused by these compounds. These data suggest that sigma-2 ligand-induced apoptosis and caspase activation are partially responsible for the cell death. WC-26 and siramesine induced formation of vacuoles in the cells. WC-26, SV119, RHM-138 and siramesine increased the synthesis and processing of microtubule-associated protein light chain 3, an autophagosome marker, and decreased the expression levels of the downstream effectors of mammalian target of rapamycin (mTOR), p70S6K and 4EBP1, suggesting that sigma-2 ligands induce autophagy, probably by inhibition of the mTOR pathway. All four sigma-2 ligands decreased the expression of cyclin D1 in a time-dependent manner. In addition, WC-26 and SV119 mainly decreased cyclin B1, E2 and phosphorylation of retinoblastoma protein (pRb); RHM-138 mainly decreased cyclin E2; and 10 M siramesine mainly decreased cyclin B1 and pRb. These data suggest that sigma-2 ligands also impair cell-cycle progression in multiple phases of the cell cycle. CONCLUSION: Sigma-2 ligands induce cell death by multiple signalling pathways.
KW - apoptosis
KW - autophagy
KW - breast tumour cells
KW - cell cycle
KW - sigma-2 receptors
UR - http://www.scopus.com/inward/record.url?scp=84863180523&partnerID=8YFLogxK
U2 - 10.1038/bjc.2011.602
DO - 10.1038/bjc.2011.602
M3 - Article
C2 - 22251921
AN - SCOPUS:84863180523
SN - 0007-0920
VL - 106
SP - 693
EP - 701
JO - British Journal of Cancer
JF - British Journal of Cancer
IS - 4
ER -