TY - JOUR
T1 - Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study
AU - Chen, Jianzhong
AU - Tam, Angela
AU - Kebets, Valeria
AU - Orban, Csaba
AU - Ooi, Leon Qi Rong
AU - Asplund, Christopher L.
AU - Marek, Scott
AU - Dosenbach, Nico U.F.
AU - Eickhoff, Simon B.
AU - Bzdok, Danilo
AU - Holmes, Avram J.
AU - Yeo, B. T.Thomas
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - How individual differences in brain network organization track behavioral variability is a fundamental question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, most studies focus on single behavioral traits, thus not capturing broader relationships across behaviors. In a large sample of 1858 typically developing children from the Adolescent Brain Cognitive Development (ABCD) study, we show that predictive network features are distinct across the domains of cognitive performance, personality scores and mental health assessments. On the other hand, traits within each behavioral domain are predicted by similar network features. Predictive network features and models generalize to other behavioral measures within the same behavioral domain. Although tasks are known to modulate the functional connectome, predictive network features are similar between resting and task states. Overall, our findings reveal shared brain network features that account for individual variation within broad domains of behavior in childhood.
AB - How individual differences in brain network organization track behavioral variability is a fundamental question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, most studies focus on single behavioral traits, thus not capturing broader relationships across behaviors. In a large sample of 1858 typically developing children from the Adolescent Brain Cognitive Development (ABCD) study, we show that predictive network features are distinct across the domains of cognitive performance, personality scores and mental health assessments. On the other hand, traits within each behavioral domain are predicted by similar network features. Predictive network features and models generalize to other behavioral measures within the same behavioral domain. Although tasks are known to modulate the functional connectome, predictive network features are similar between resting and task states. Overall, our findings reveal shared brain network features that account for individual variation within broad domains of behavior in childhood.
UR - http://www.scopus.com/inward/record.url?scp=85128840191&partnerID=8YFLogxK
U2 - 10.1038/s41467-022-29766-8
DO - 10.1038/s41467-022-29766-8
M3 - Article
C2 - 35468875
AN - SCOPUS:85128840191
SN - 2041-1723
VL - 13
JO - Nature communications
JF - Nature communications
IS - 1
M1 - 2217
ER -