TY - JOUR
T1 - Sex determination and sex chromosome evolution in land plants
AU - Renner, Susanne S.
AU - Müller, Niels A.
N1 - Funding Information:
N.A.M. was supported by a grant from the German Research Foundation (grant no DFG MU 4357/1-1). Acknowledgements
Publisher Copyright:
©
PY - 2022
Y1 - 2022
N2 - Linnaeus's very first opus, written when he was 22 years old, dealt with the analogy that exists between plants and animals in how they 'propagate their species', and a revised version with a plate depicting the union of male and female Mercurialis annua plants became a foundational text on the sexuality of plants. The question how systems with separate males and females have evolved in sedentary organisms that appear ancestrally bisexual has fascinated biologists ever since. The phenomenon, termed dioecy, has important consequences for plant reproductive success and is of commercial interest since it affects seed quality and fruit production. This theme issue presents a series of articles that synthesize and challenge the current understanding of how plants achieve dioecy. The articles deal with a broad set of taxa, including Coccinia, Ginkgo, Mercurialis, Populus, Rumex and Silene, as well as overarching topics, such as the field's terminology, analogies with animal sex determination systems, evolutionary pathways to dioecy, dosage compensation, and the longevity of the two sexes. In this introduction, we focus on four topics, each addressed by several articles from different angles and with different conclusions. Our highlighting of unclear or controversial issues may help future studies to build on the current understanding and to ask new questions that will expand our knowledge of plant sexual systems. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
AB - Linnaeus's very first opus, written when he was 22 years old, dealt with the analogy that exists between plants and animals in how they 'propagate their species', and a revised version with a plate depicting the union of male and female Mercurialis annua plants became a foundational text on the sexuality of plants. The question how systems with separate males and females have evolved in sedentary organisms that appear ancestrally bisexual has fascinated biologists ever since. The phenomenon, termed dioecy, has important consequences for plant reproductive success and is of commercial interest since it affects seed quality and fruit production. This theme issue presents a series of articles that synthesize and challenge the current understanding of how plants achieve dioecy. The articles deal with a broad set of taxa, including Coccinia, Ginkgo, Mercurialis, Populus, Rumex and Silene, as well as overarching topics, such as the field's terminology, analogies with animal sex determination systems, evolutionary pathways to dioecy, dosage compensation, and the longevity of the two sexes. In this introduction, we focus on four topics, each addressed by several articles from different angles and with different conclusions. Our highlighting of unclear or controversial issues may help future studies to build on the current understanding and to ask new questions that will expand our knowledge of plant sexual systems. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
KW - Animal sex determination systems
KW - dioecy pathways
KW - dosage compensation
KW - key open questions
KW - plant sex determination systems
UR - http://www.scopus.com/inward/record.url?scp=85126855864&partnerID=8YFLogxK
U2 - 10.1098/rstb.2021.0210
DO - 10.1098/rstb.2021.0210
M3 - Review article
C2 - 35306895
AN - SCOPUS:85126855864
SN - 0962-8436
VL - 377
JO - Philosophical Transactions of the Royal Society B: Biological Sciences
JF - Philosophical Transactions of the Royal Society B: Biological Sciences
IS - 1850
M1 - 20210210
ER -