Sex- and Strain-Specific Expression and Vomeronasal Activity of Mouse ESP Family Peptides

Hiroko Kimoto, Koji Sato, Francesco Nodari, Sachiko Haga, Timothy E. Holy, Kazushige Touhara

Research output: Contribution to journalArticlepeer-review

116 Scopus citations


Male mice secrete exocrine-gland-secreting peptide 1 (ESP1) from the extraorbital lacrimal gland into tear fluid [1]. Other mice detect ESP1 through sensory neurons in the vomeronasal organ (VNO), a secondary olfactory system that senses pheromonal information, including sex, strain, and species. ESP1 is now known to be a member of a multigene family that encodes peptides of various lengths. We herein performed genomic and expression analyses of the ESP family. The ESP family consists of 38 members in mice and 10 members in rat but is absent from the human genome, suggesting rapid molecular evolution. In addition to the male-specific ESP1, we discovered one, which we designated ESP36, that, in adult BALB/c mice, is expressed only in the female extraorbital lacrimal gland. The sexually dimorphic expression is ensured by the release of testosterone after puberty. However, we observed dramatic differences in the expression levels of ESPs between strains. Finally, all ESPs elicited an electrical response in the vomeronasal epithelium but not in the main olfactory epithelium. Multielectrode recording of VNO activity demonstrated that ESP1 induces action potentials in vomeronasal neurons, leading to an increase in the spike firing rate, and that ESP1 is recognized by narrowly tuned vomeronasal sensory neurons. Sexual dimorphism and strain differences of ESPs and their reception in the VNO suggest that the ESP family can convey information about sex and individual identity via the vomeronasal system. The chemosensation of this nonvolatile peptide family by direct contact appears to be one of strategies for sociosexual communication in rodent species.

Original languageEnglish
Pages (from-to)1879-1884
Number of pages6
JournalCurrent Biology
Issue number21
StatePublished - Nov 6 2007




Dive into the research topics of 'Sex- and Strain-Specific Expression and Vomeronasal Activity of Mouse ESP Family Peptides'. Together they form a unique fingerprint.

Cite this