TY - JOUR
T1 - Separating Clinical and Subclinical Depression by Big Data Informed Structural Vulnerability Index and Its impact on Cognition
T2 - ENIGMA Dot Product
AU - Kochunov, Peter
AU - Ma, Yizhou
AU - Hatch, Kathryn S.
AU - Schmaal, Lianne
AU - Jahanshad, Neda
AU - Thompson, Paul M.
AU - Adhikari, Bhim M.
AU - Bruce, Heather
AU - Chiappelli, Joshua
AU - Van der Vaart, Andrew
AU - Goldwaser, Eric L.
AU - Sotiras, Aris
AU - Ma, Tianzhou
AU - Chen, Shuo
AU - Nichols, Thomas E.
AU - Hong, L. Elliot
PY - 2022/1/1
Y1 - 2022/1/1
N2 - Big Data neuroimaging collaborations including Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) integrated worldwide data to identify regional brain deficits in major depressive disorder (MDD). We evaluated the sensitivity of translating ENIGMA-defined MDD deficit patterns to the individual level. We treated ENIGMA MDD deficit patterns as a vector to gauge the similarity between individual and MDD patterns by calculating ENIGMA dot product (EDP). We analyzed the sensitivity and specificity of EDP in separating subjects with (1) subclinical depressive symptoms without a diagnosis of MDD, (2) single episode MDD, (3) recurrent MDD, and (4) controls free of neuropsychiatric disorders. We compared EDP to the Quantile Regression Index (QRI; a linear alternative to the brain age metric) and the global gray matter thickness and subcortical volumes and fractional anisotropy (FA) of water diffusion. We performed this analysis in a large epidemiological sample of UK Biobank (UKBB) participants (N=17,053/19,265 M/F). Group-average increases in depressive symptoms from controls to recurrent MDD was mirrored by EDP (r2=0.85), followed by FA (r2=0.81) and QRI (r2=0.56). Subjects with MDD showed worse performance on cognitive tests than controls with deficits observed for 3 out of 9 cognitive tests administered by the UKBB. We calculated correlations of EDP and other brain indices with measures of cognitive performance in controls. The correlation pattern between EDP and cognition in controls was similar (r2=0.75) to the pattern of cognitive differences in MDD. This suggests that the elevation in EDP, even in controls, is associated with cognitive performance - specifically in the MDD-affected domains. That specificity was missing for QRI, FA or other brain imaging indices. In summary, translating anatomically informed meta-analytic indices of similarity using a linear vector approach led to better sensitivity to depressive symptoms and cognitive patterns than whole-brain imaging measurements or an index of accelerated aging.
AB - Big Data neuroimaging collaborations including Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) integrated worldwide data to identify regional brain deficits in major depressive disorder (MDD). We evaluated the sensitivity of translating ENIGMA-defined MDD deficit patterns to the individual level. We treated ENIGMA MDD deficit patterns as a vector to gauge the similarity between individual and MDD patterns by calculating ENIGMA dot product (EDP). We analyzed the sensitivity and specificity of EDP in separating subjects with (1) subclinical depressive symptoms without a diagnosis of MDD, (2) single episode MDD, (3) recurrent MDD, and (4) controls free of neuropsychiatric disorders. We compared EDP to the Quantile Regression Index (QRI; a linear alternative to the brain age metric) and the global gray matter thickness and subcortical volumes and fractional anisotropy (FA) of water diffusion. We performed this analysis in a large epidemiological sample of UK Biobank (UKBB) participants (N=17,053/19,265 M/F). Group-average increases in depressive symptoms from controls to recurrent MDD was mirrored by EDP (r2=0.85), followed by FA (r2=0.81) and QRI (r2=0.56). Subjects with MDD showed worse performance on cognitive tests than controls with deficits observed for 3 out of 9 cognitive tests administered by the UKBB. We calculated correlations of EDP and other brain indices with measures of cognitive performance in controls. The correlation pattern between EDP and cognition in controls was similar (r2=0.75) to the pattern of cognitive differences in MDD. This suggests that the elevation in EDP, even in controls, is associated with cognitive performance - specifically in the MDD-affected domains. That specificity was missing for QRI, FA or other brain imaging indices. In summary, translating anatomically informed meta-analytic indices of similarity using a linear vector approach led to better sensitivity to depressive symptoms and cognitive patterns than whole-brain imaging measurements or an index of accelerated aging.
UR - http://www.scopus.com/inward/record.url?scp=85122545344&partnerID=8YFLogxK
M3 - Article
C2 - 34890143
AN - SCOPUS:85122545344
SN - 2335-6928
VL - 27
SP - 133
EP - 143
JO - Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
JF - Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
ER -