TY - JOUR
T1 - Selective degradation of accumulated secretory proteins in the endoplasmic reticulum
T2 - A possible clearance pathway for abnormal tropoelastin
AU - Davis, Elaine C.
AU - Mecham, Robert P.
PY - 1996/2/16
Y1 - 1996/2/16
N2 - The specific pathway of tropoelastin secretion was investigated in fetal calf ligamentum nuchae (FCL) cells using brefeldin A (BFA) to disrupt the secretory pathway. Electron microscopic studies of BFA-treated FCL cells showed ultrastructural changes consistent with the reported effects of BFA on intracellular organelles. When FCL cells were labeled with [3H]leucine in the presence of BFA, radiolabeled tropoelastin was not secreted, nor was there an intracellular accumulation of the protein. In contrast, fibronectin accumulated within the cells in the presence of BFA. Northern analysis of mRNA levels in FCL cells showed that the message for tropoelastin was unaffected by BFA treatment. Pulse chase experiments conducted in the presence of BFA demonstrated that the tropoelastin retained within the cells was rapidly degraded. Ammonium chloride, nocodazole, and cycloheximide had no effect on the degradation of tropoelastin, indicating that the degradation did not involve the endosome/lysosome pathway, movement via microtubules, or a short-lived protein, respectively. Incubation of FCL cells with BFA in the presence of N-acetyl-Leu-Leu-norleucinal, however, allowed tropoelastin to steadily accumulate in the cells. Cells pulsed in the presence of BFA alone showed that tropoelastin initially accumulates within the cells for approximately 1 h prior to being degraded, thus indicating that a critical threshold of tropoelastin must be reached before degradation can occur. Results from this study provide evidence for selective degradation of a soluble secreted protein by a cysteine protease following retention of the protein in the endoplasmic reticulum.
AB - The specific pathway of tropoelastin secretion was investigated in fetal calf ligamentum nuchae (FCL) cells using brefeldin A (BFA) to disrupt the secretory pathway. Electron microscopic studies of BFA-treated FCL cells showed ultrastructural changes consistent with the reported effects of BFA on intracellular organelles. When FCL cells were labeled with [3H]leucine in the presence of BFA, radiolabeled tropoelastin was not secreted, nor was there an intracellular accumulation of the protein. In contrast, fibronectin accumulated within the cells in the presence of BFA. Northern analysis of mRNA levels in FCL cells showed that the message for tropoelastin was unaffected by BFA treatment. Pulse chase experiments conducted in the presence of BFA demonstrated that the tropoelastin retained within the cells was rapidly degraded. Ammonium chloride, nocodazole, and cycloheximide had no effect on the degradation of tropoelastin, indicating that the degradation did not involve the endosome/lysosome pathway, movement via microtubules, or a short-lived protein, respectively. Incubation of FCL cells with BFA in the presence of N-acetyl-Leu-Leu-norleucinal, however, allowed tropoelastin to steadily accumulate in the cells. Cells pulsed in the presence of BFA alone showed that tropoelastin initially accumulates within the cells for approximately 1 h prior to being degraded, thus indicating that a critical threshold of tropoelastin must be reached before degradation can occur. Results from this study provide evidence for selective degradation of a soluble secreted protein by a cysteine protease following retention of the protein in the endoplasmic reticulum.
UR - http://www.scopus.com/inward/record.url?scp=0030063331&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.7.3787
DO - 10.1074/jbc.271.7.3787
M3 - Article
C2 - 8631995
AN - SCOPUS:0030063331
SN - 0021-9258
VL - 271
SP - 3787
EP - 3794
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 7
ER -