Abstract
Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/ feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid ''''surge'''' capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the b2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.
Original language | English |
---|---|
Pages (from-to) | 817-831 |
Number of pages | 15 |
Journal | Stem Cell Reports |
Volume | 3 |
Issue number | 5 |
DOIs | |
State | Published - 2014 |