Roles of free radicals in type 1 phototherapeutic agents: Aromatic amines, sulfenamides, and sulfenates

Tien Sung Lin, Raghavan Rajagopalan, Yuefei Shen, Sungho Park, Amruta R. Poreddy, Bethel Asmelash, Amolkumar S. Karwa, John Stephen A. Taylor

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Detailed analyses of the electron spin resonance (ESR) spectra, cell viability, and DNA degradation studies are presented for the photolyzed Type I phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates. The ESR studies provided evidence that copious free radicals can be generated from these N-H, N-S, and S-O containing compounds upon photoirradiation with UV/visible light. The analyses of spectral data allowed us to identify the free radical species. The cell viability studies showed that these agents after exposure to light exert cytotoxicity to kill cancer cells (U937 leukemia cell lines HTC11, KB, and HT29 cell lines) in a dosage- and time-dependent manner. We examined a possible pathway of cell death via DNA degradation by a plasmid cleavage assay for several compounds. The effects of photosensitization with benzophenone in the presence of oxygen were examined. The studies indicate that planar tricyclic amines and sulfenamides tend to form π-electron delocalized aminyl radicals, whereas nonplanar ones tend to yield nitroxide radicals resulting from the recombination of aminyl radicals with oxygen. The ESR studies coupled with the results of cell viability measurements and DNA degradation reveal that planar N-centered radicals can provide higher potency in cell death and allow us to provide some insights on the reaction mechanisms. We also found the formation of azatropylium cations possessing high aromaticity derived from azepines can facilitate secondary electron transfer to form toxic O2 •- radicals, which can further exert oxidative stress and cause cell death.

Original languageEnglish
Pages (from-to)5454-5462
Number of pages9
JournalJournal of Physical Chemistry A
Volume117
Issue number26
DOIs
StatePublished - Jul 3 2013

Fingerprint

Dive into the research topics of 'Roles of free radicals in type 1 phototherapeutic agents: Aromatic amines, sulfenamides, and sulfenates'. Together they form a unique fingerprint.

Cite this