TY - JOUR
T1 - Role of the anterior insula in task-level control and focal attention.
AU - Nelson, Steven M.
AU - Dosenbach, Nico U.F.
AU - Cohen, Alexander L.
AU - Wheeler, Mark E.
AU - Schlaggar, Bradley L.
AU - Petersen, Steven E.
N1 - Funding Information:
We thank Kelly Anne Barnes, Gagan S. Wig, and Bud Craig, as well as an anonymous reviewer for helpful suggestions. We also thank David Van Essen for providing the first version of the map shown in Figure 1. Funding for this work was provided by NIH grants NS61144 (S.E.P.), NS46424 (S.E.P.), NS62489 (A.L.C.), HD57076 (B.L.S.), NS53425 (B.L.S.), NS41255 (B.L.S.) and IGERT NSF548890.
PY - 2010/6
Y1 - 2010/6
N2 - In humans, the anterior insula (aI) has been the topic of considerable research and ascribed a vast number of functional properties by way of neuroimaging and lesion studies. Here, we argue that the aI, at least in part, plays a role in domain-general attentional control and highlight studies (Dosenbach et al. 2006; Dosenbach et al. 2007) supporting this view. Additionally, we discuss a study (Ploran et al. 2007) that implicates aI in processes related to the capture of focal attention. Task-level control and focal attention may or may not reflect information processing supported by a single functional area (within the aI). Therefore, we apply a novel technique (Cohen et al. 2008) that utilizes resting state functional connectivity MRI (rs-fcMRI) to determine whether separable regions exist within the aI. rs-fcMRI mapping suggests that the ventral portion of the aI is distinguishable from more dorsal/anterior regions, which are themselves distinct from more posterior parts of the aI. When these regions are applied to functional MRI (fMRI) data, the ventral and dorsal/anterior regions support processes potentially related to both task-level control and focal attention, whereas the more posterior aI regions did not. These findings suggest that there exists some functional heterogeneity within aI that may subserve related but distinct types of higher-order cognitive processing.
AB - In humans, the anterior insula (aI) has been the topic of considerable research and ascribed a vast number of functional properties by way of neuroimaging and lesion studies. Here, we argue that the aI, at least in part, plays a role in domain-general attentional control and highlight studies (Dosenbach et al. 2006; Dosenbach et al. 2007) supporting this view. Additionally, we discuss a study (Ploran et al. 2007) that implicates aI in processes related to the capture of focal attention. Task-level control and focal attention may or may not reflect information processing supported by a single functional area (within the aI). Therefore, we apply a novel technique (Cohen et al. 2008) that utilizes resting state functional connectivity MRI (rs-fcMRI) to determine whether separable regions exist within the aI. rs-fcMRI mapping suggests that the ventral portion of the aI is distinguishable from more dorsal/anterior regions, which are themselves distinct from more posterior parts of the aI. When these regions are applied to functional MRI (fMRI) data, the ventral and dorsal/anterior regions support processes potentially related to both task-level control and focal attention, whereas the more posterior aI regions did not. These findings suggest that there exists some functional heterogeneity within aI that may subserve related but distinct types of higher-order cognitive processing.
UR - http://www.scopus.com/inward/record.url?scp=85027953483&partnerID=8YFLogxK
U2 - 10.1007/s00429-010-0260-2
DO - 10.1007/s00429-010-0260-2
M3 - Review article
C2 - 20512372
AN - SCOPUS:85027953483
SN - 1863-2653
VL - 214
SP - 669
EP - 680
JO - Brain structure & function
JF - Brain structure & function
IS - 5-6
ER -