TY - JOUR
T1 - Role of Mineralocorticoid Receptor in Adipogenesis and Obesity in Male Mice
AU - Ferguson, Daniel
AU - Hutson, Irina
AU - Tycksen, Eric
AU - Pietka, Terri A.
AU - Bauerle, Kevin
AU - Harris, Charles
N1 - Funding Information:
Financial Support: This work was funded by NIH grant DK106083 to C.A.H. D.F. was supported by T32 grant DK007120. Imaging work was supported by the Hope Center Alafi Neuroimaging Lab and a P30 Neuroscience Blueprint Interdisciplinary Center Core (P30 NS057105) and NIH Shared Instrumentation Grant (S10 RR027552) awarded to Washington University. Metabolic cage studies were supported by the Diabetes Research Center (P30 DK020579). We thank the Genome Technology Access Center in the Department of Genetics at Washington University School of Medicine for help with genomic analysis. The Center is partially supported by NCI Cancer Center Support Grant #P30 CA91842 to the Siteman Cancer Center and by ICTS/CTSA Grant# UL1TR002345 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and NIH Roadmap for Medical Research. The publication is solely the responsibility of the authors and does not necessarily represent the official view of NCRR or NIH. We thank Clay Semenkovich for helpful discussions.
Publisher Copyright:
© 2019 Endocrine Society 2019. All rights reserved.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Increased visceral adiposity and hyperglycemia, 2 characteristics of metabolic syndrome, are also present in conditions of excess glucocorticoids (GCs). GCs are hormones thought to act primarily via the glucocorticoid receptor (GR). GCs are commonly prescribed for inflammatory disorders, yet their use is limited due to many adverse metabolic side effects. In addition to GR, GCs also bind the mineralocorticoid receptor (MR), but there are many conflicting studies about the exact role of MR in metabolic disease. Using MR knockout mice (MRKO), we find that both white and brown adipose depots form normally when compared with wild-type mice at P5. We created mice with adipocyte-specific deletion of MR (FMRKO) to better understand the role of MR in metabolic dysfunction. Treatment of mice with excess GCs for 4 weeks, via corticosterone in drinking water, induced increased fat mass and glucose intolerance to similar levels in FMRKO and floxed control mice. Separately, when fed a high-fat diet for 16 weeks, FMRKO mice had reduced body weight, fat mass, and hepatic steatosis, relative to floxed control mice. Decreased adiposity likely resulted from increased energy expenditure since food intake was not different. RNA sequencing analysis revealed decreased enrichment of genes associated with adipogenesis in inguinal white adipose of FMRKO mice. Differentiation of mouse embryonic fibroblasts (MEFs) showed modestly impaired adipogenesis in MRKO MEFs compared with wild type, but this was rescued upon the addition of peroxisome proliferator-activated receptor gamma (PPARγ) agonist or PPARγoverexpression. Collectively, these studies provide further evidence supporting the potential value of MR as a therapeutic target for conditions associated with metabolic syndrome.
AB - Increased visceral adiposity and hyperglycemia, 2 characteristics of metabolic syndrome, are also present in conditions of excess glucocorticoids (GCs). GCs are hormones thought to act primarily via the glucocorticoid receptor (GR). GCs are commonly prescribed for inflammatory disorders, yet their use is limited due to many adverse metabolic side effects. In addition to GR, GCs also bind the mineralocorticoid receptor (MR), but there are many conflicting studies about the exact role of MR in metabolic disease. Using MR knockout mice (MRKO), we find that both white and brown adipose depots form normally when compared with wild-type mice at P5. We created mice with adipocyte-specific deletion of MR (FMRKO) to better understand the role of MR in metabolic dysfunction. Treatment of mice with excess GCs for 4 weeks, via corticosterone in drinking water, induced increased fat mass and glucose intolerance to similar levels in FMRKO and floxed control mice. Separately, when fed a high-fat diet for 16 weeks, FMRKO mice had reduced body weight, fat mass, and hepatic steatosis, relative to floxed control mice. Decreased adiposity likely resulted from increased energy expenditure since food intake was not different. RNA sequencing analysis revealed decreased enrichment of genes associated with adipogenesis in inguinal white adipose of FMRKO mice. Differentiation of mouse embryonic fibroblasts (MEFs) showed modestly impaired adipogenesis in MRKO MEFs compared with wild type, but this was rescued upon the addition of peroxisome proliferator-activated receptor gamma (PPARγ) agonist or PPARγoverexpression. Collectively, these studies provide further evidence supporting the potential value of MR as a therapeutic target for conditions associated with metabolic syndrome.
KW - Adipose
KW - Corticosterone
KW - Energy Expenditure
KW - Glucocorticoids
KW - Mineralocorticoid Receptor
UR - http://www.scopus.com/inward/record.url?scp=85079109033&partnerID=8YFLogxK
U2 - 10.1210/endocr/bqz010
DO - 10.1210/endocr/bqz010
M3 - Article
C2 - 32036385
AN - SCOPUS:85079109033
VL - 161
JO - Endocrinology
JF - Endocrinology
SN - 0013-7227
IS - 2
M1 - bqz010
ER -