TY - JOUR
T1 - Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection
AU - Lin, Ann E.
AU - Beasley, Federico C.
AU - Olson, Joshua
AU - Keller, Nadia
AU - Shalwitz, Robert A.
AU - Hannan, Thomas J.
AU - Hultgren, Scott J.
AU - Nizet, Victor
N1 - Publisher Copyright:
© 2015 Lin et al.
PY - 2015/4/1
Y1 - 2015/4/1
N2 - Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infections (UTI) affecting approximately 150 million people worldwide. Here, we revealed the importance of transcriptional regulator hypoxia-inducible factor-1 α subunit (HIF-1α) in innate defense against UPEC-mediated UTI. The effects of AKB-4924, a HIF-1α stabilizing agent, were studied using human uroepithelial cells (5637) and a murine UTI model. UPEC adherence and invasion were significantly reduced in 5637 cells when HIF-1α protein was allowed to accumulate. Uroepithelial cells treated with AKB-4924 also experienced reduced cell death and exfoliation upon UPEC challenge. In vivo, fewer UPEC were recovered from the urine, bladders and kidneys of mice treated transurethrally with AKB-4924, whereas increased bacteria were recovered from bladders of mice with a HIF-1α deletion. Bladders and kidneys of AKB-4924 treated mice developed less inflammation as evidenced by decreased pro-inflammatory cytokine release and neutrophil activity. AKB-4924 impairs infection in uroepithelial cells and bladders, and could be correlated with enhanced production of nitric oxide and antimicrobial peptides cathelicidin and β-defensin-2. We conclude that HIF-1α transcriptional regulation plays a key role in defense of the urinary tract against UPEC infection, and that pharmacological HIF-1α boosting could be explored further as an adjunctive therapy strategy for serious or recurrent UTI.
AB - Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infections (UTI) affecting approximately 150 million people worldwide. Here, we revealed the importance of transcriptional regulator hypoxia-inducible factor-1 α subunit (HIF-1α) in innate defense against UPEC-mediated UTI. The effects of AKB-4924, a HIF-1α stabilizing agent, were studied using human uroepithelial cells (5637) and a murine UTI model. UPEC adherence and invasion were significantly reduced in 5637 cells when HIF-1α protein was allowed to accumulate. Uroepithelial cells treated with AKB-4924 also experienced reduced cell death and exfoliation upon UPEC challenge. In vivo, fewer UPEC were recovered from the urine, bladders and kidneys of mice treated transurethrally with AKB-4924, whereas increased bacteria were recovered from bladders of mice with a HIF-1α deletion. Bladders and kidneys of AKB-4924 treated mice developed less inflammation as evidenced by decreased pro-inflammatory cytokine release and neutrophil activity. AKB-4924 impairs infection in uroepithelial cells and bladders, and could be correlated with enhanced production of nitric oxide and antimicrobial peptides cathelicidin and β-defensin-2. We conclude that HIF-1α transcriptional regulation plays a key role in defense of the urinary tract against UPEC infection, and that pharmacological HIF-1α boosting could be explored further as an adjunctive therapy strategy for serious or recurrent UTI.
UR - http://www.scopus.com/inward/record.url?scp=84929485232&partnerID=8YFLogxK
U2 - 10.1371/journal.ppat.1004818
DO - 10.1371/journal.ppat.1004818
M3 - Article
C2 - 25927232
AN - SCOPUS:84929485232
SN - 1553-7366
VL - 11
JO - PLoS pathogens
JF - PLoS pathogens
IS - 4
M1 - e1004818
ER -