Abstract
BACKGROUND: Neonatal germinal matrix hemorrhage/intraventricular hemorrhage is common and often results in hydrocephalus. The pathogenesis of posthemorrhagic hydrocephalus is not fully understood. OBJECTIVE: To explore the potential role of hemoglobin and iron released after hemorrhage. METHODS: Artificial cerebrospinal fluid (aCSF), hemoglobin, or iron was injected into the right lateral ventricle of postnatal day-7 Sprague Dawley rats. Ventricle size, heme oxygenase-1 (HO-1) expression, and the presence of iron were evaluated 24 and 72 hours after injection. A subset of animals was treated with an iron chelator (deferoxamine) or vehicle for 24 hours after hemoglobin injection, and ventricle size and cell death were evaluated. RESULTS: Intraventricular injection of hemoglobin and iron resulted in ventricular enlargement at 24 hours compared with the injection of aCSF. Protoporphyrin IX, the iron-deficient immediate heme precursor, did not result in ventricular enlargement after injection into the ventricle. HO-1, the enzyme that releases iron from heme, was increased in the hippocampus and cortex of hemoglobin-injected animals at 24 hours compared with aCSF-injected controls. Treatment with an iron chelator, deferoxamine, decreased hemoglobin-induced ventricular enlargement and cell death. CONCLUSION: Intraventricular injection of hemoglobin and iron can induce hydrocephalus. Treatment with an iron chelator reduced hemoglobin-induced ventricular enlargement. This has implications for the pathogenesis and treatment of posthemorrhagic hydrocephalus.
Original language | English |
---|---|
Pages (from-to) | 696-705 |
Number of pages | 10 |
Journal | Neurosurgery |
Volume | 75 |
Issue number | 6 |
DOIs | |
State | Published - 2014 |
Keywords
- Hemoglobin
- Hydrocephalus
- Iron
- Neonatal