@article{7cfeb29c7e4b4035912fe8623d8b2343,
title = "Role for α-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies",
abstract = "A dystrophin-containing glycoprotein complex (DGC) links the basal lamina surrounding each muscle fibre to the fibre's cytoskeleton, providing both structural support and a scaffold for signalling molecules. Mutations in genes encoding several DGC components disrupt the complex and lead to muscular dystrophy. Here we show that mice deficient in α-dystrobrevin, a cytoplasmic protein of the DGC, exhibit skeletal and cardiac myopathies. Analysis of double and triple mutants indicates that α-dystrobrevin acts largely through the DGC. Structural components of the DGC are retained in the absence of α-dystrobrevin, but a DGC-associated signalling protein, nitric oxide synthase, is displaced from the membrane and nitric-oxide-mediated signalling is impaired. These results indicate that both signalling and structural functions of the DGC are required for muscle stability, and implicate α-dystrobrevin in the former.",
author = "Grady, {R. Mark} and Grange, {Robert W.} and Lau, {Kim S.} and Maimone, {Margaret M.} and Nichol, {Mia C.} and Stull, {James T.} and Sanes, {Joshua R.}",
note = "Funding Information: 29. Peters, M. F. et al. Differential membrane localization and intermolecular associations of α-dystrobrevin isoforms in skeletal muscle. J. Cell Biol. 142, 1269–1278 (1998). 30. Thomas, G. D. et al. Impaired metabolic modulation of alpha-adrenergic vasoconstriction in dystrophin-deficient skeletal muscle. Proc. Natl Acad. Sci. USA 95, 15090–15095 (1998). 31. Bredt, D. S. NO skeletal muscle derived relaxing factor in Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 95, 14592–14593 (1998). 32. Lau, K. S. et al. Skeletal muscle contractions stimulate cGMP formation and attenuate vascular smooth muscle myosin phosphorylation via nitric oxide. FEBS Lett. 431, 71–74 (1998). 33. Blake, D. J., Nawrotzki, R., Peters, M. F., Froehner, S. C. & Davies, K. E. Isoform diversity of dystrobrevin, the murine 87-kDa postsynaptic protein. J. Biol. Chem. 271, 7802–7810 (1996). 34. DiMario, J. X., Uzman, A. & Strohman, R. C. Fiber regeneration is not persistent in dystrophic (mdx) mouse skeletal muscle. Dev. Biol. 148, 314–321 (1991). 35. Torres, L. F. & Duchen, L. W. The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscles and end-plates. Brain 110, 269–299 (1987). 36. Grady, R. M. et al. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90, 729–738 (1997). 37. Deconinck, A. E. et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90, 717–727 (1997). 38. Matsuda, R., Nishikawa, A. & Tanaka, H. Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue: evidence of apoptosis in dystrophin-deficient muscle. J. Biochem. 118, 959–964 (1995). 39. Straub, V., Rafael, J. A., Chamberlain, J. S. & Campbell, K. P. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J. Cell Biol. 139, 375–385 (1997). 40. Brenman, J. E., Chao, D. S., Xia, H., Aldape, K. & Bredt, D. S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82, 743–752 (1995). 41. Chang, W. J. et al. Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc. Natl Acad. Sci. USA 93, 9142–9147 (1996). 42. Thomas, G. D. & Victor, R. G. Nitric oxide mediates contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle. J. Physiol. (Lond.) 506, 817–826 (1998). 43. Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S.H. & Fishman, M.C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75, 1273–1280 (1993). 44. Metzinger, L. et al. Dystrobrevin deficiency at the sarcolemma of patients with muscular dystrophy. Hum. Mol. Genet. 6, 1185–1191 (1997). 45. Crosbie, R. H. et al. Mdx muscle pathology is independent of nNOS perturbation. Hum. Mol. Genet. 7, 823–829 (1998). 46. Chao, D. S., Silvagno F. & Bredt, D. S. Muscular dystrophy in mdx mice despite lack of neuronal nitric oxide synthase. J. Neurochem. 71, 784 (1998). 47. Kameya, S. et al. α1-Syntrophin gene disruption results in the absence of neuronal-type nitric-oxide synthase at the sarcolemma but does not induce muscle degeneration. J. Biol. Chem. 274, 2193–2200 (1999). 48. Ambrose, H. J., Blake, D. J., Nawrotski, R. A. & Davies, K. E. Genomic organization of the mouse dystrobrevin gene: comparative analysis with the dystrophin gene. Genomics 39, 359 (1997) 49. Grady, R. M., Merlie, J. P. & Sanes, J. R. Subtle neuromuscular defects in utrophin-deficient mice. J. Cell Biol. 136, 871 (1997) ACKNOWLEDGEMENTS We thank S. Froehner and M. Peters for antibodies. This work was supported by the NIH and MDA (J.R.S. and R.M.G.). Correspondence and requests for materials should be addressed to R.M.G.",
year = "1999",
month = aug,
doi = "10.1038/12034",
language = "English",
volume = "1",
pages = "215--220",
journal = "Nature Cell Biology",
issn = "1465-7392",
number = "4",
}