Risk scoring for the primary prevention of cardiovascular disease

Kunal N. Karmali, Stephen D. Persell, Pablo Perel, Donald M. Lloyd-Jones, Mark A. Berendsen, Mark D. Huffman

Research output: Contribution to journalReview articlepeer-review

32 Scopus citations

Abstract

Background: The current paradigm for cardiovascular disease (CVD) emphasises absolute risk assessment to guide treatment decisions in primary prevention. Although the derivation and validation of multivariable risk assessment tools, or CVD risk scores, have attracted considerable attention, their effect on clinical outcomes is uncertain. Objectives: To assess the effects of evaluating and providing CVD risk scores in adults without prevalent CVD on cardiovascular outcomes, risk factor levels, preventive medication prescribing, and health behaviours. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library (2016, Issue 2), MEDLINE Ovid (1946 to March week 1 2016), Embase (embase.com) (1974 to 15 March 2016), and Conference Proceedings Citation Index-Science (CPCI-S) (1990 to 15 March 2016). We imposed no language restrictions. We searched clinical trial registers in March 2016 and handsearched reference lists of primary studies to identify additional reports. Selection criteria: We included randomised and quasi-randomised trials comparing the systematic provision of CVD risk scores by a clinician, healthcare professional, or healthcare system compared with usual care (i.e. no systematic provision of CVD risk scores) in adults without CVD. Data collection and analysis: Three review authors independently selected studies, extracted data, and evaluated study quality. We used the Cochrane 'Risk of bias' tool to assess study limitations. The primary outcomes were: CVD events, change in CVD risk factor levels (total cholesterol, systolic blood pressure, and multivariable CVD risk), and adverse events. Secondary outcomes included: lipid-lowering and antihypertensive medication prescribing in higher-risk people. We calculated risk ratios (RR) for dichotomous data and mean differences (MD) or standardised mean differences (SMD) for continuous data using 95% confidence intervals. We used a fixed-effects model when heterogeneity (I2) was at least 50% and a random-effects model for substantial heterogeneity (I2 > 50%). We evaluated the quality of evidence using the GRADE framework. Main results: We identified 41 randomised controlled trials (RCTs) involving 194,035 participants from 6422 reports. We assessed studies as having high or unclear risk of bias across multiple domains. Low-quality evidence evidence suggests that providing CVD risk scores may have little or no effect on CVD events compared with usual care (5.4% versus 5.3%; RR 1.01, 95% confidence interval (CI) 0.95 to 1.08; I2 = 25%; 3 trials, N = 99,070). Providing CVD risk scores may reduce CVD risk factor levels by a small amount compared with usual care. Providing CVD risk scores reduced total cholesterol (MD -0.10 mmol/L, 95% CI -0.20 to 0.00; I2 = 94%; 12 trials, N = 20,437, low-quality evidence), systolic blood pressure (MD -2.77 mmHg, 95% CI -4.16 to -1.38; I2 = 93%; 16 trials, N = 32,954, low-quality evidence), and multivariable CVD risk (SMD -0.21, 95% CI -0.39 to -0.02; I2 = 94%; 9 trials, N = 9549, low-quality evidence). Providing CVD risk scores may reduce adverse events compared with usual care, but results were imprecise (1.9% versus 2.7%; RR 0.72, 95% CI 0.49 to 1.04; I2 = 0%; 4 trials, N = 4630, low-quality evidence). Compared with usual care, providing CVD risk scores may increase new or intensified lipid-lowering medications (15.7% versus 10.7%; RR 1.47, 95% CI 1.15 to 1.87; I2 = 40%; 11 trials, N = 14,175, low-quality evidence) and increase new or increased antihypertensive medications (17.2% versus 11.4%; RR 1.51, 95% CI 1.08 to 2.11; I2 = 53%; 8 trials, N = 13,255, low-quality evidence). Authors' conclusions: There is uncertainty whether current strategies for providing CVD risk scores affect CVD events. Providing CVD risk scores may slightly reduce CVD risk factor levels and may increase preventive medication prescribing in higher-risk people without evidence of harm. There were multiple study limitations in the identified studies and substantial heterogeneity in the interventions, outcomes, and analyses, so readers should interpret results with caution. New models for implementing and evaluating CVD risk scores in adequately powered studies are needed to define the role of applying CVD risk scores in primary CVD prevention.

Original languageEnglish
Article numberCD006887
JournalCochrane Database of Systematic Reviews
Volume2017
Issue number3
DOIs
StatePublished - Mar 14 2017

Fingerprint

Dive into the research topics of 'Risk scoring for the primary prevention of cardiovascular disease'. Together they form a unique fingerprint.

Cite this