Rhoptries: an arsenal of secreted virulence factors

Peter J. Bradley, L. David Sibley

Research output: Contribution to journalReview article

120 Scopus citations

Abstract

Apicomplexan parasites use actin-based motility coupled with regulated protein secretion from apical organelles to actively invade host cells. Crucial in this process are rhoptries, club-shaped secretory organelles that discharge their contents during parasite invasion into host cells. A proteomic analysis of the rhoptries in Toxoplasma gondii demonstrated that this organelle contains a number of novel rhoptry proteins (ROPs) including serine-threonine kinases and protein phosphatases. A subset of rhoptry proteins called RONs have been shown to target the moving junction, which plays a key role in invasion and parasitophorous vacuole formation. Other ROP proteins have various destinations in the host cell including the host cell nucleus and the parasitophorous vacuole, probably reflecting their distinct targets and roles. Forward genetic analysis recently revealed that secretory ROP kinases dramatically influence host gene expression and are the major parasite virulence factors. Thus, ROP proteins are functionally analogous (though not homologous) to effectors released by type III and IV secretion systems, which are factors that play an important role in bacterial virulence. Deciphering the role of ROP effectors may allow specific disruption of these factors, thus offering new options for preventing disease.

Original languageEnglish
Pages (from-to)582-587
Number of pages6
JournalCurrent Opinion in Microbiology
Volume10
Issue number6
DOIs
StatePublished - Dec 1 2007

Fingerprint Dive into the research topics of 'Rhoptries: an arsenal of secreted virulence factors'. Together they form a unique fingerprint.

  • Cite this