TY - JOUR
T1 - Rhodobacter capsulatus nifA1 Promoter
T2 - High-GC -10 Regions in High-GC Bacteria and the Basis for Their Transcription
AU - Richard, Cynthia L.
AU - Tandon, Animesh
AU - Kranz, Robert G.
PY - 2004/2
Y1 - 2004/2
N2 - It was previously shown that the Rhodobacter capsulatus NtrC enhancer-binding protein activates the R. capsulatus housekeeping RNA polymerase but not the Escherichia coli RNA polymerase at the nifA1 promoter. We have tested the hypothesis that this activity is due to the high G+C content of the -10 sequence. A comparative analysis of R. capsulatus and other α-proteobacterial promoters with known transcription start sites suggests that the G+C content of the -10 region is higher than that for E. coli. Both in vivo and in vitro results obtained with nifA1 promoters with -10 and/or -35 variations are reported here. A major conclusion of this study is that α-proteobacteria have evolved a promiscuous sigma factor and core RNA polymerase that can transcribe promoters with high-GC -10 regions in addition to the classic E. coli Pribnow box. To facilitate studies of R. capsulatus transcription, we cloned and overexpressed all of the RNA polymerase subunits in E. coli, and these were reconstituted in vitro to form an active, recombinant R. capsulatus RNA polymerase with properties mimicking those of the natural polymerase. Thus, no additional factors from R. capsulatus are necessary for the recognition of high-GC promoters or for activation by R. capsulatus NtrC. The addition of R. capsulatus σ70 to the E. coli core RNA polymerase or the use of -10 promoter mutants did not facilitate R. capsulatus NtrC activation of the nifA1 promoter by the E. coli RNA polymerase. Thus, an additional barrier to activation by R. capsulatus NtrC exists, probably a lack of the proper R. capsulatus NtrC-E. coli RNA polymerase (protein-protein) interaction(s).
AB - It was previously shown that the Rhodobacter capsulatus NtrC enhancer-binding protein activates the R. capsulatus housekeeping RNA polymerase but not the Escherichia coli RNA polymerase at the nifA1 promoter. We have tested the hypothesis that this activity is due to the high G+C content of the -10 sequence. A comparative analysis of R. capsulatus and other α-proteobacterial promoters with known transcription start sites suggests that the G+C content of the -10 region is higher than that for E. coli. Both in vivo and in vitro results obtained with nifA1 promoters with -10 and/or -35 variations are reported here. A major conclusion of this study is that α-proteobacteria have evolved a promiscuous sigma factor and core RNA polymerase that can transcribe promoters with high-GC -10 regions in addition to the classic E. coli Pribnow box. To facilitate studies of R. capsulatus transcription, we cloned and overexpressed all of the RNA polymerase subunits in E. coli, and these were reconstituted in vitro to form an active, recombinant R. capsulatus RNA polymerase with properties mimicking those of the natural polymerase. Thus, no additional factors from R. capsulatus are necessary for the recognition of high-GC promoters or for activation by R. capsulatus NtrC. The addition of R. capsulatus σ70 to the E. coli core RNA polymerase or the use of -10 promoter mutants did not facilitate R. capsulatus NtrC activation of the nifA1 promoter by the E. coli RNA polymerase. Thus, an additional barrier to activation by R. capsulatus NtrC exists, probably a lack of the proper R. capsulatus NtrC-E. coli RNA polymerase (protein-protein) interaction(s).
UR - http://www.scopus.com/inward/record.url?scp=1642500149&partnerID=8YFLogxK
U2 - 10.1128/JB.186.3.740-749.2004
DO - 10.1128/JB.186.3.740-749.2004
M3 - Article
C2 - 14729700
AN - SCOPUS:1642500149
SN - 0021-9193
VL - 186
SP - 740
EP - 749
JO - Journal of bacteriology
JF - Journal of bacteriology
IS - 3
ER -