TY - JOUR
T1 - Revisiting Animal Models of Aortic Stenosis in the Early Gestation Fetus
AU - Eghtesady, Pirooz
AU - Michelfelder, Erik
AU - Altaye, Mekibib
AU - Ballard, Edgar
AU - Hirsh, Russel
AU - Beekman, Robert H.
N1 - Funding Information:
This work was supported by the TRI grant of CHRF and charitable contributions of Cincinnati Children’s Heart Association. The authors also wish to thank Ms Dawn Burman for her technical assistance on this project.
PY - 2007/2
Y1 - 2007/2
N2 - Background: Mechanisms leading to left ventricular hypoplasia and endocardial fibroelastosis in the fetus remain unknown. Prevailing theory is that obstruction to blood flow through the left ventricle leads to elevated end-diastolic pressures, compromised myocardial perfusion, and endocardial ischemia. Fetal interventions are now being performed, based on the presumption that they would prevent such pathogenic mechanisms. Methods: Forty first-trimester fetal sheep (mean gestational age, 53 days) were studied. Severe fetal left ventricular outflow obstruction was created by banding the ascending aorta in 25 fetuses; 15 control fetuses underwent "sham" surgery with thoracotomy. Serial fetal echocardiography was used to assess left ventricular growth and fetal hemodynamics. Findings were correlated to morphologic and histopathologic changes, and intracardiac pressure measurements obtained from fetal cardiac catheterization. Results: Surviving banded fetuses (n = 13) had one of two phenotypes: compensatory left ventricular hypertrophy (n = 7) or noncompensatory left ventricular dilatation (n = 6) with hydrops and severe left ventricular dysfunction. All fetuses had elevated left ventricular end-diastolic pressures (mean, 21 mm Hg; range, 14 to 28 mm Hg), which correlated to the gradient across the ascending aorta (mean, 41 mm Hg; range, 28 to 73 mm Hg). In vivo echocardiography findings were incongruous with those at autopsy, and demonstrated preservation of left ventricular growth indices in all fetuses. Endocardial fibroelastosis and myocardial fibrosis were not observed in any banded fetus. Conclusions: While early gestational obstruction to flow can compromise left ventricular function in the fetus, it does not retard normal growth. Similarly, an elevated left ventricular end-diastolic pressure is not sufficient to cause myocardial fibrosis or endocardial fibroelastosis in the fetus.
AB - Background: Mechanisms leading to left ventricular hypoplasia and endocardial fibroelastosis in the fetus remain unknown. Prevailing theory is that obstruction to blood flow through the left ventricle leads to elevated end-diastolic pressures, compromised myocardial perfusion, and endocardial ischemia. Fetal interventions are now being performed, based on the presumption that they would prevent such pathogenic mechanisms. Methods: Forty first-trimester fetal sheep (mean gestational age, 53 days) were studied. Severe fetal left ventricular outflow obstruction was created by banding the ascending aorta in 25 fetuses; 15 control fetuses underwent "sham" surgery with thoracotomy. Serial fetal echocardiography was used to assess left ventricular growth and fetal hemodynamics. Findings were correlated to morphologic and histopathologic changes, and intracardiac pressure measurements obtained from fetal cardiac catheterization. Results: Surviving banded fetuses (n = 13) had one of two phenotypes: compensatory left ventricular hypertrophy (n = 7) or noncompensatory left ventricular dilatation (n = 6) with hydrops and severe left ventricular dysfunction. All fetuses had elevated left ventricular end-diastolic pressures (mean, 21 mm Hg; range, 14 to 28 mm Hg), which correlated to the gradient across the ascending aorta (mean, 41 mm Hg; range, 28 to 73 mm Hg). In vivo echocardiography findings were incongruous with those at autopsy, and demonstrated preservation of left ventricular growth indices in all fetuses. Endocardial fibroelastosis and myocardial fibrosis were not observed in any banded fetus. Conclusions: While early gestational obstruction to flow can compromise left ventricular function in the fetus, it does not retard normal growth. Similarly, an elevated left ventricular end-diastolic pressure is not sufficient to cause myocardial fibrosis or endocardial fibroelastosis in the fetus.
UR - http://www.scopus.com/inward/record.url?scp=33846344261&partnerID=8YFLogxK
U2 - 10.1016/j.athoracsur.2006.09.043
DO - 10.1016/j.athoracsur.2006.09.043
M3 - Article
C2 - 17257999
AN - SCOPUS:33846344261
SN - 0003-4975
VL - 83
SP - 631
EP - 639
JO - Annals of Thoracic Surgery
JF - Annals of Thoracic Surgery
IS - 2
ER -