TY - JOUR
T1 - Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function
AU - Kiser, Philip D.
AU - Zhang, Jianye
AU - Sharma, Aditya
AU - Angueyra, Juan M.
AU - Kolesnikov, Alexander V.
AU - Badiee, Mohsen
AU - Tochtrop, Gregory P.
AU - Kinoshita, Junzo
AU - Peachey, Neal S.
AU - Li, Wei
AU - Kefalov, Vladimir J.
AU - Palczewski, Krzysztof
N1 - Funding Information:
We thank Dr. Leslie T. Webster Jr. and members of the Palczewski laboratory for helpful comments on this manuscript and Dr. Jianying Kiser for technical assistance. This work was supported by the National Institutes of Health (R01EY009339 to K. Palczewski and P.D. Kiser, R24EY024864 and R24EY027283 to K. Palczewski, R01EY019312 to V.J. Kefalov, R01EY021126 to K. Palczewski and V.J. Kefalov, R01CA157735 to G.P. Tochtrop, P30EY011373 to the Department of Ophthalmology and Visual Sciences at Case Western Reserve University, P30EY025585 to the Cleveland Clinic Cole Eye Institute, and P30EY002687 to the Department of Ophthalmology and Visual Sciences at Washington University and the National Eye Institute Intramural Research Program to W. Li); the U.S. Department of Veterans Affairs (IK2BX002683 to P.D. Kiser and a Research Career Scientist Award to N.S. Peachey); the Foundation Fighting Blindness (supporting K. Palczewski); the National Science Foundation (MCB-084480 to G.P. Tochtrop); and Research to Prevent Blindness. K. Palczewski is John H. Hord Professor of Pharmacology. The authors declare no competing financial interests. Author contributions: Experiments were conceived and designed by P.D. Kiser, G.P. Tochtrop, W. Li, N.S. Peachey, V.J. Kefalov, and K. Palczewski. Data acquisition, analysis, and interpretation were performed by P.D. Kiser, J. Zhang, A. Sharma, J.M. Angueyra, A.V. Kolesnikov, M. Badiee, J. Kinoshita, N.S. Peachey, and V.J. Kefalov. Drafting and revising the manuscript were done by P.D. Kiser, J. Zhang, J.M. Angueyra, A.V. Kolesnikov, M. Badiee, J. Kinoshita, N.S. Peachey, V.J. Kefalov, and K. Palczewski. All authors have approved the final version of the manuscript. Edward N. Pugh served as guest editor.
Publisher Copyright:
© 2018 Kiser et al.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - Visual function in vertebrates critically depends on the continuous regeneration of visual pigments in rod and cone photoreceptors. RPE65 is a well-established retinoid isomerase in the pigment epithelium that regenerates rhodopsin during the rod visual cycle; however, its contribution to the regeneration of cone pigments remains obscure. In this study, we use potent and selective RPE65 inhibitors in rod- and cone-dominant animal models to discern the role of this enzyme in cone-mediated vision. We confirm that retinylamine and emixustat-family compounds selectively inhibit RPE65 over DES1, the putative retinoid isomerase of the intraretinal visual cycle. In vivo and ex vivo electroretinography experiments in Gnat1-/- mice demonstrate that acute administration of RPE65 inhibitors after a bleach suppresses the late, slow phase of cone dark adaptation without affecting the initial rapid portion, which reflects intraretinal visual cycle function. Acute administration of these compounds does not affect the light sensitivity of cone photoreceptors in mice during extended exposure to background light, but does slow all phases of subsequent dark recovery. We also show that cone function is only partially suppressed in cone-dominant ground squirrels and wild-type mice by multiday administration of an RPE65 inhibitor despite profound blockade of RPE65 activity. Complementary experiments in these animal models using the DES1 inhibitor fenretinide show more modest effects on cone recovery. Collectively, these studies demonstrate a role for continuous RPE65 activity in mammalian cone pigment regeneration and provide further evidence for RPE65- independent regeneration mechanisms.
AB - Visual function in vertebrates critically depends on the continuous regeneration of visual pigments in rod and cone photoreceptors. RPE65 is a well-established retinoid isomerase in the pigment epithelium that regenerates rhodopsin during the rod visual cycle; however, its contribution to the regeneration of cone pigments remains obscure. In this study, we use potent and selective RPE65 inhibitors in rod- and cone-dominant animal models to discern the role of this enzyme in cone-mediated vision. We confirm that retinylamine and emixustat-family compounds selectively inhibit RPE65 over DES1, the putative retinoid isomerase of the intraretinal visual cycle. In vivo and ex vivo electroretinography experiments in Gnat1-/- mice demonstrate that acute administration of RPE65 inhibitors after a bleach suppresses the late, slow phase of cone dark adaptation without affecting the initial rapid portion, which reflects intraretinal visual cycle function. Acute administration of these compounds does not affect the light sensitivity of cone photoreceptors in mice during extended exposure to background light, but does slow all phases of subsequent dark recovery. We also show that cone function is only partially suppressed in cone-dominant ground squirrels and wild-type mice by multiday administration of an RPE65 inhibitor despite profound blockade of RPE65 activity. Complementary experiments in these animal models using the DES1 inhibitor fenretinide show more modest effects on cone recovery. Collectively, these studies demonstrate a role for continuous RPE65 activity in mammalian cone pigment regeneration and provide further evidence for RPE65- independent regeneration mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=85045014388&partnerID=8YFLogxK
U2 - 10.1085/jgp.201711815
DO - 10.1085/jgp.201711815
M3 - Article
C2 - 29500274
AN - SCOPUS:85045014388
SN - 0022-1295
VL - 150
SP - 571
EP - 590
JO - Journal of General Physiology
JF - Journal of General Physiology
IS - 4
ER -