TY - JOUR
T1 - Retinal ganglion cell repopulation for vision restoration in optic neuropathy
T2 - a roadmap from the RReSTORe Consortium
AU - The RReSTORe Consortium
AU - Soucy, Jonathan R.
AU - Aguzzi, Erika A.
AU - Cho, Julie
AU - Gilhooley, Michael James
AU - Keuthan, Casey
AU - Luo, Ziming
AU - Monavarfeshani, Aboozar
AU - Saleem, Meher A.
AU - Wang, Xue Wei
AU - Wohlschlegel, Juilette
AU - Baranov, Petr
AU - Di Polo, Adriana
AU - Fortune, Brad
AU - Gokoffski, Kimberly K.
AU - Goldberg, Jeffrey L.
AU - Guido, William
AU - Kolodkin, Alex L.
AU - Mason, Carol A.
AU - Ou, Yvonne
AU - Reh, Thomas A.
AU - Ross, Ahmara G.
AU - Samuels, Brian C.
AU - Welsbie, Derek
AU - Zack, Donald J.
AU - Johnson, Thomas V.
AU - Fouda, Abdelrahman Y.
AU - Ashok, Ajay
AU - Moshiri, Ala
AU - Chedotal, Alain
AU - Reed, Amberlynn A.
AU - Askary, Amjad
AU - Su, An Jey A.
AU - La Torre, Anna
AU - Jalligampala, Archana
AU - Silva-Lepe, Ariadna
AU - Das, Arupratan
AU - Wirostko, Barbara
AU - Frankfort, Benjamin J.
AU - Sivyer, Benjamin
AU - Alapure, Bhagwat
AU - Young, Brent
AU - Clark, Brian
AU - Jones, Bryan William
AU - Hellmer, Chase
AU - Mitchell, Claire
AU - Ufongene, Claire
AU - Goldman, Dan
AU - Feldheim, David
AU - Gutmann, David H.
AU - Calkins, David J.
AU - Krizaj, David
AU - Gamm, David M.
AU - Lozano, Diana C.
AU - Bovenkamp, Diane E.
AU - Chen, Dong Feng
AU - Cordero, Elena Vecino
AU - Trakhtenberg, Ephraim F.
AU - Tian, Feng
AU - Zhou, Fengquan
AU - McLellan, Gillian J.
AU - Quigley, Harry A.
AU - Serhan, Hashem Abu
AU - Tribble, James R.
AU - Meyer, Jason
AU - Gross, Jeff
AU - Mumm, Jeff S.
AU - Sivak, Jeremy M.
AU - Zhang, Jingliang Simon
AU - Do, Jiun L.
AU - Crowston, Jonathan
AU - Chen, Julie
AU - McGregor, Juliette
AU - Wohlschlegel, Juliette
AU - Vinnakota, Kalyan C.
AU - Huang, Kang Chieh
AU - Peynshaert, Karen
AU - Uyhazi, Katherine E.
AU - Martin, Keith
AU - Muller, Ken
AU - Park, Kevin K.
AU - Cho, Kin Sang
AU - Chang, Kun Che
AU - Benowitz, Larry
AU - Levin, Leonard A.
AU - Todd, Levi
AU - De Groef, Lies
AU - Moons, Lieve
AU - Alarcon-Martinez, Luis
AU - Singh, Mandeep S.
AU - Vidal-Sanz, Manuel
AU - Silveira, Mariana S.
AU - Pavlou, Marina
AU - Veldman, Matthew B.
AU - Van Hook, Matthew
AU - Samuel, Melanie
AU - Hu, Mengming
AU - Peng, Micalla
AU - Young, Michael
AU - Cayouette, Michel
AU - Geranmayeh, Mohammad H.
AU - Woodworth, Mollie
AU - Vetter, Monica
AU - Marsh-Armstrong, Nicholas R.
AU - Williams, Pete A.
AU - Rasiah, Pratheepa Kumari
AU - Subramanian, Preeti
AU - Cui, Qi N.
AU - Sappington, Rebecca M.
AU - Amine, Reem
AU - Eva, Richard
AU - Johnston, Robert J.
AU - Giger, Roman J.
AU - Ethier, Ross
AU - Abed, Sadaf
AU - Momin, Sehrish Nizar Ali
AU - Blackshaw, Seth
AU - Liddelow, Shane A.
AU - Mary, Stella
AU - Atolagbe, Stephen
AU - Varadarajan, Supraja
AU - Nabhan, Tareq I.
AU - Khatib, Tasneem
AU - Sharma, Tasneem Putliwala
AU - Brunner, Thomas
AU - Greenwell, Tom
AU - Rex, Tonia S.
AU - Watkins, Trent
AU - Badea, Tudor C.
AU - Vrathasha, V.
AU - Chavali, Venkata Ramana Murthy
AU - Oliveira-Valença, Viviane M.
AU - Tai, Wai Lydia
AU - Batchelor, Wyndham M.
AU - Yang, Xian Jie
AU - Wang, Xue Wei
AU - Park, Yong
AU - Pan, Yuan
N1 - Publisher Copyright:
© 2023, Editorial Group and BioMed Central Ltd., part of Springer Nature.
PY - 2023/12
Y1 - 2023/12
N2 - Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system’s limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium’s efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
AB - Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system’s limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium’s efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
KW - Glaucoma
KW - Neuroprotection
KW - Ophthalmology
KW - Optic neuropathy
KW - Organoids
KW - Regenerative medicine
KW - Retinal ganglion cells
KW - Stem cells
KW - Transplantation
UR - http://www.scopus.com/inward/record.url?scp=85171956125&partnerID=8YFLogxK
U2 - 10.1186/s13024-023-00655-y
DO - 10.1186/s13024-023-00655-y
M3 - Review article
C2 - 37735444
AN - SCOPUS:85171956125
SN - 1750-1326
VL - 18
JO - Molecular neurodegeneration
JF - Molecular neurodegeneration
IS - 1
M1 - 64
ER -