TY - JOUR
T1 - Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm
AU - Zhang, Xiaoguo
AU - Ding, Xinxin
AU - Marshall, Richard Scott
AU - Paez-Valencia, Julio
AU - Lacey, Patrick
AU - Vierstra, Richard David
AU - Otegui, Marisa S.
N1 - Funding Information:
We would like to thank Edward Wilkinson and Jaydin Grenier for their assistance during this project, Natalia de Leon (University of Wisconsin) and the staff at the West Madison Agricultural Research Station and at the Wisconsin Crop Innovation Center for their support growing and processing maize material, Rebecca Boston (North Carolina State University) for providing the anti-calnexin antibodies, and Donald McCarty and Karen Koch (University of Florida) for developing the UniformMu lines. This work was supported by National Science Foundation grants IOS-1339325 and IOS-1840687 to MSO and RDV, the United States Department of Agriculture; National Institute of Food and Agriculture Hatch Act Formula Fund WIS01791 to MSO, and funds from the University of Wisconsin; Department of Botany to XD. National Science Foundation IOS-1840687 Marisa S Otegui. Agriculture Hatch Act Formula Fund WIS01791 Marisa S Otegui. National Science Foundation IOS-133932 Richard David Vierstra. U.S. Department of Agriculture Marisa S Otegui. National Institute of Food and Agriculture Hatch Act Formula Fund WIS0179 Marisa S Otegui. University of Wisconsin-Madison Xinxin Ding.
Funding Information:
We would like to thank Edward Wilkinson and Jaydin Grenier for their assistance during this project, Natalia de Leon (University of Wisconsin) and the staff at the West Madison Agricultural Research Station and at the Wisconsin Crop Innovation Center for their support growing and processing maize material, Rebecca Boston (North Carolina State University) for providing the anti-calnexin antibodies, and Donald McCarty and Karen Koch (University of Florida) for developing the UniformMu lines. This work was supported by National Science Foundation grants IOS-1339325 and IOS-1840687 to MSO and RDV, the United States Department of Agriculture; National Institute of Food and Agriculture Hatch Act Formula Fund WIS01791 to MSO, and funds from the University of Wisconsin; Department of Botany to XD.
Publisher Copyright:
© Zhang et al.
PY - 2020/2
Y1 - 2020/2
N2 - Reticulon (Rtn) proteins shape tubular domains of the endoplasmic reticulum (ER), and in some cases are autophagy receptors for selective ER turnover. We have found that maize Rtn1 and Rtn2 control ER homeostasis and autophagic flux in endosperm aleurone cells, where the ER accumulates lipid droplets and synthesizes storage protein accretions metabolized during germination. Maize Rtn1 and Rtn2 are expressed in the endosperm, localize to the ER, and remodel ER architecture in a dose-dependent manner. Rtn1 and Rtn2 interact with Atg8a using four Atg8-interacting motifs (AIMs) located at the C-terminus, cytoplasmic loop, and within the transmembrane segments. Binding between Rtn2 and Atg8 is elevated upon ER stress. Maize rtn2 mutants display increased autophagy and up-regulation of an ER stress-responsive chaperone. We propose that maize Rtn1 and Rtn2 act as receptors for autophagy-mediated ER turnover, and thus are critical for ER homeostasis and suppression of ER stress.
AB - Reticulon (Rtn) proteins shape tubular domains of the endoplasmic reticulum (ER), and in some cases are autophagy receptors for selective ER turnover. We have found that maize Rtn1 and Rtn2 control ER homeostasis and autophagic flux in endosperm aleurone cells, where the ER accumulates lipid droplets and synthesizes storage protein accretions metabolized during germination. Maize Rtn1 and Rtn2 are expressed in the endosperm, localize to the ER, and remodel ER architecture in a dose-dependent manner. Rtn1 and Rtn2 interact with Atg8a using four Atg8-interacting motifs (AIMs) located at the C-terminus, cytoplasmic loop, and within the transmembrane segments. Binding between Rtn2 and Atg8 is elevated upon ER stress. Maize rtn2 mutants display increased autophagy and up-regulation of an ER stress-responsive chaperone. We propose that maize Rtn1 and Rtn2 act as receptors for autophagy-mediated ER turnover, and thus are critical for ER homeostasis and suppression of ER stress.
UR - http://www.scopus.com/inward/record.url?scp=85080830626&partnerID=8YFLogxK
U2 - 10.7554/eLife.51918
DO - 10.7554/eLife.51918
M3 - Article
C2 - 32011236
AN - SCOPUS:85080830626
SN - 2050-084X
VL - 9
JO - eLife
JF - eLife
M1 - e51918
ER -