TY - JOUR
T1 - Ret heterozygous mice have enhanced intestinal adaptation after massive small bowel resection
AU - Hitch, Meredith C.
AU - Leinicke, Jennifer A.
AU - Wakeman, Derek
AU - Guo, Jun
AU - Erwin, Chris R.
AU - Rowland, Kathryn J.
AU - Merrick, Ellen C.
AU - Heuckeroth, Robert O.
AU - Warner, Brad W.
PY - 2012/5/15
Y1 - 2012/5/15
N2 - Intestinal adaptation is an important compensatory response to massive small bowel resection (SBR) and occurs because of a proliferative stimulus to crypt enterocytes by poorly understood mechanisms. Recent studies suggest the enteric nervous system (ENS) influences enterocyte proliferation. We, therefore, sought to determine whether ENS dysfunction alters resection-induced adaptation responses. Ret+/- mice with abnormal ENS function and wild-type (WT) littermates underwent sham surgery or 50% SBR. After 7 days, ileal morphology, enterocyte proliferation, apoptosis, and selected signaling proteins were characterized. Crypt depth and villus height were equivalent at baseline in WT and Ret+/- mice. In contrast after SBR, Ret+/- mice had longer villi (Ret+/- 426.7 ± 46.0 μm vs. WT 306.5 ± 7.7 μm, P < 0.001) and deeper crypts (Ret+/- 119 ± 3.4 μm vs. WT 82.4 ± 3.1 μm, P < 0.001) than WT. Crypt enterocyte proliferation was higher in Ret+/- (48.8 ± 1.3%) than WT (39.9 ± 2.1%; P < 0.001) after resection, but apoptosis rates were similar. Remnant bowel of Ret+/- mice also had higher levels of glucagon-like peptide 2 (6.2-fold, P = 0.005) and amphiregulin (4.6-fold, P < 0.001) mRNA after SBR, but serum glucagon-like peptide 2 protein levels were equal in WT and Ret+/- mice, and there was no evidence of increased c-Fos nuclear localization in submucosal neurons. Western blot confirmed higher crypt epidermal growth factor receptor (EGFR) protein levels (1.44-fold; P < 0.001) and more phosphorylated EGFR (2-fold; P = 0.003) in Ret+/- than WT mice after SBR. These data suggest that Ret heterozygosity enhances intestinal adaptation after massive SBR, likely via enhanced EGFR signaling. Reducing Ret activity or altering ENS function may provide a novel strategy to enhance adaptation attenuating morbidity in patients with short bowel syndrome.
AB - Intestinal adaptation is an important compensatory response to massive small bowel resection (SBR) and occurs because of a proliferative stimulus to crypt enterocytes by poorly understood mechanisms. Recent studies suggest the enteric nervous system (ENS) influences enterocyte proliferation. We, therefore, sought to determine whether ENS dysfunction alters resection-induced adaptation responses. Ret+/- mice with abnormal ENS function and wild-type (WT) littermates underwent sham surgery or 50% SBR. After 7 days, ileal morphology, enterocyte proliferation, apoptosis, and selected signaling proteins were characterized. Crypt depth and villus height were equivalent at baseline in WT and Ret+/- mice. In contrast after SBR, Ret+/- mice had longer villi (Ret+/- 426.7 ± 46.0 μm vs. WT 306.5 ± 7.7 μm, P < 0.001) and deeper crypts (Ret+/- 119 ± 3.4 μm vs. WT 82.4 ± 3.1 μm, P < 0.001) than WT. Crypt enterocyte proliferation was higher in Ret+/- (48.8 ± 1.3%) than WT (39.9 ± 2.1%; P < 0.001) after resection, but apoptosis rates were similar. Remnant bowel of Ret+/- mice also had higher levels of glucagon-like peptide 2 (6.2-fold, P = 0.005) and amphiregulin (4.6-fold, P < 0.001) mRNA after SBR, but serum glucagon-like peptide 2 protein levels were equal in WT and Ret+/- mice, and there was no evidence of increased c-Fos nuclear localization in submucosal neurons. Western blot confirmed higher crypt epidermal growth factor receptor (EGFR) protein levels (1.44-fold; P < 0.001) and more phosphorylated EGFR (2-fold; P = 0.003) in Ret+/- than WT mice after SBR. These data suggest that Ret heterozygosity enhances intestinal adaptation after massive SBR, likely via enhanced EGFR signaling. Reducing Ret activity or altering ENS function may provide a novel strategy to enhance adaptation attenuating morbidity in patients with short bowel syndrome.
KW - Enteric nervous system
KW - Epidermal growth factor receptor
KW - Short bowel syndrome
UR - http://www.scopus.com/inward/record.url?scp=84861147753&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00296.2011
DO - 10.1152/ajpgi.00296.2011
M3 - Article
C2 - 22421622
AN - SCOPUS:84861147753
SN - 0193-1857
VL - 302
SP - G1143-G1150
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 10
ER -