TY - JOUR
T1 - Response gene to complement 32 protein promotes macrophage phagocytosis via activation of protein kinase C pathway
AU - Tang, Rui
AU - Zhang, Gui
AU - Chen, Shi You
PY - 2014/8/15
Y1 - 2014/8/15
N2 - Macrophage phagocytosis plays an important role in host defense. The molecular mechanism, especially factors regulating the phagocytosis, however, is not completely understood. In the present study, we found that response gene to complement 32 (RGC-32) is an important regulator of phagocytosis. Although RGC-32 is induced and abundantly expressed in macrophage during monocyte-macrophage differentiation, RGC-32 appears not to be important for this process because RGC-32-deficient bone marrow progenitor can normally differentiate to macrophage. However, both peritoneal macrophages and bone marrow-derived macrophages with RGC-32 deficiency exhibit significant defects in phagocytosis, whereas RGC-32-overexpressed macrophages show increased phagocytosis. Mechanistically, RGC-32 is recruited to macrophage membrane where it promotes F-actin assembly and the formation of phagocytic cups. RGC-32 knock-out impairs F-actin assembly. RGC-32 appears to interact with PKC to regulate PKC-induced phosphorylation of F-actin cross-linking protein myristoylated alanine-rich protein kinase C substrate. Taken together, our results demonstrate for the first time that RGC-32 is a novel membrane regulator for macrophage phagocytosis.
AB - Macrophage phagocytosis plays an important role in host defense. The molecular mechanism, especially factors regulating the phagocytosis, however, is not completely understood. In the present study, we found that response gene to complement 32 (RGC-32) is an important regulator of phagocytosis. Although RGC-32 is induced and abundantly expressed in macrophage during monocyte-macrophage differentiation, RGC-32 appears not to be important for this process because RGC-32-deficient bone marrow progenitor can normally differentiate to macrophage. However, both peritoneal macrophages and bone marrow-derived macrophages with RGC-32 deficiency exhibit significant defects in phagocytosis, whereas RGC-32-overexpressed macrophages show increased phagocytosis. Mechanistically, RGC-32 is recruited to macrophage membrane where it promotes F-actin assembly and the formation of phagocytic cups. RGC-32 knock-out impairs F-actin assembly. RGC-32 appears to interact with PKC to regulate PKC-induced phosphorylation of F-actin cross-linking protein myristoylated alanine-rich protein kinase C substrate. Taken together, our results demonstrate for the first time that RGC-32 is a novel membrane regulator for macrophage phagocytosis.
UR - http://www.scopus.com/inward/record.url?scp=84905987779&partnerID=8YFLogxK
U2 - 10.1074/jbc.M114.566653
DO - 10.1074/jbc.M114.566653
M3 - Article
C2 - 24973210
AN - SCOPUS:84905987779
SN - 0021-9258
VL - 289
SP - 22715
EP - 22722
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 33
ER -