Repair of Large Sliding Inguinal Hernias

Navdeep S. Samra, David H. Ballard, Darin F. Doumite, F. Dean Griffen

Research output: Contribution to journalReview articlepeer-review

3 Scopus citations


Sliding inguinal hernias are often unexpected intra-operative findings, and repair of which can be technically challenging. A number of repair techniques have been described. The author modified a technique based on an approach described by Bevan. The purpose of our study is to describe this modified Bevan technique for repair of sliding inguinal hernias and report its efficacy in a series of patients. We retrospectively reviewed all patients with open inguinal hernia repairs performed by a single surgeon from August 2007 to April 2013 for sliding indirect hernias using the modified Bevan technique. Patient records were reviewed for demographics, hernia characteristics, complications, admission status, length of stay, and complications. There were 25 patients eligible for our review (male = 25, mean age = 49 years). All sliding hernias were indirect, none were bilateral, and two were incarcerated. The sliding component involved the bladder and perivesical fat (n = 12), sigmoid colon (n = 10), and the cecum and appendix (n = 3). Eighteen patients were treated as outpatients; seven patients were admitted with a mean stay of 2.2 days. Complications included intra-operative bleeding (n = 1), subcutaneous wound hematoma (n = 1), scrotal seroma (n = 1), transient orchialgia (n = 1), and ileus (n = 1). All patients were seen postoperatively for short-term follow-up with no hernia recurrences. Thirteen patients were available for long-term follow-up (mean = 13.6 months); all had no hernia recurrences. The modification of Bevan's technique for repair of large sliding hernias worked well in our series.

Original languageEnglish
Pages (from-to)1204-1208
Number of pages5
JournalThe American surgeon
Issue number12
StatePublished - Dec 1 2015


Dive into the research topics of 'Repair of Large Sliding Inguinal Hernias'. Together they form a unique fingerprint.

Cite this