Abstract

This study describes the measurement of fields of relative displacement between the brain and the skull in vivo by tagged magnetic resonance imaging and digital image analysis. Motion of the brain relative to the skull occurs during normal activity, but if the head undergoes high accelerations, the resulting large and rapid deformation of neuronal and axonal tissue can lead to long-term disability or death. Mathematical modelling and computer simulation of acceleration-induced traumatic brain injury promise to illuminate the mechanisms of axonal and neuronal pathology, but numerical studies require knowledge of boundary conditions at the brain-skull interface, material properties and experimental data for validation. The current study provides a dense set of displacement measurements in the human brain during mild frontal skull impact constrained to the sagittal plane. Although head motion is dominated by translation, these data show that the brain rotates relative to the skull. For these mild events, characterized by linear decelerations near 1.5g (g = 9.81 m s-2) and angular accelerations of 120-140 rad s-2, relative brain-skull displacements of 2-3 mm are typical; regions of smaller displacements reflect the tethering effects of brain-skull connections. Strain fields exhibit significant areas with maximal principal strains of 5 per cent or greater. These displacement and strain fields illuminate the skull-brain boundary conditions, and can be used to validate simulations of brain biomechanics.

Original languageEnglish
Pages (from-to)1677-1688
Number of pages12
JournalJournal of the Royal Society Interface
Volume7
Issue number53
DOIs
StatePublished - Dec 6 2010

Keywords

  • Deformation
  • Displacement
  • Image registration
  • Magnetic resonance imaging
  • Traumatic brain injury

Fingerprint

Dive into the research topics of 'Relative brain displacement and deformation during constrained mild frontal head impact'. Together they form a unique fingerprint.

Cite this