TY - JOUR
T1 - Relationship of optic nerve and brain conventional and non-conventional MRI measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx
T2 - A pilot study
AU - Frohman, Elliot M.
AU - Dwyer, Michael G.
AU - Frohman, Teresa
AU - Cox, Jennifer L.
AU - Salter, Amber
AU - Greenberg, Benjamin M.
AU - Hussein, Sara
AU - Conger, Amy
AU - Calabresi, Peter
AU - Balcer, Laura J.
AU - Zivadinov, Robert
PY - 2009/7/15
Y1 - 2009/7/15
N2 - Background: Measurement of retinal nerve fiber layer (RNFL) thickness in multiple sclerosis (MS) is gaining increasing attention. Objectives: To explore the relationship between RNFL thickness as measured by optical coherence tomography (OCT) and scanning laser polarimetry with variable corneal compensation (GDx), and conventional and non-conventional optic nerve and brain MRI measures. Methods: Twelve relapsing-remitting (RR) MS patients (12 affected and 12 unaffected eyes) and 4 age- and sex-matched normal controls (NC) (8 unaffected eyes) were enrolled. Four MS patients had a history of bilateral optic neuritis (ON), four had a history of unilateral ON, and 4 had no history of ON. Optic nerve MRI measurements included the length of T2 lesions, measurement of optic nerve atrophy, magnetization transfer ratio (MTR) and diffusion tensor imaging (DTI) measures. Optic nerve atrophy was measured by a novel method with high reproducibility. Brain MRI measurements included T1 and T2 lesion volumes (LVs) and their relative MTRs, and tissue class specific atrophy, MTR and DTI measures. Measures of RNFL were evaluated with OCT and GDx. We also evaluated both high and low contrast letter acuities (LCLA) in order to determine the relationship between vision, MRI metrics, and retinal structural architecture. Results: LCLA, RNFL-OCT and optic nerve radius measures showed more robust differences between NC and MS patients, and between MS patients with affected and unaffected eyes. T2-LV and T1-LV, as well as gray matter atrophy, DTI and MTR measures were related to LCLA and RNFL thickness. Unique additive variance regression models showed that both brain and optic nerve MRI measures independently accounted for about 50% of the variance in LCLA and RNFL thickness. In reverse models, about 20% of the additional independent variance was explained by optic nerve or brain MRI metrics. Conclusions: Measurement of RNFL thickness and radius of the optic nerve should be preferred to the other optic nerve MRI measures in clinical studies. Whole brain lesion and GM measures are predictive of impaired visual function with corresponding structural concomitants.
AB - Background: Measurement of retinal nerve fiber layer (RNFL) thickness in multiple sclerosis (MS) is gaining increasing attention. Objectives: To explore the relationship between RNFL thickness as measured by optical coherence tomography (OCT) and scanning laser polarimetry with variable corneal compensation (GDx), and conventional and non-conventional optic nerve and brain MRI measures. Methods: Twelve relapsing-remitting (RR) MS patients (12 affected and 12 unaffected eyes) and 4 age- and sex-matched normal controls (NC) (8 unaffected eyes) were enrolled. Four MS patients had a history of bilateral optic neuritis (ON), four had a history of unilateral ON, and 4 had no history of ON. Optic nerve MRI measurements included the length of T2 lesions, measurement of optic nerve atrophy, magnetization transfer ratio (MTR) and diffusion tensor imaging (DTI) measures. Optic nerve atrophy was measured by a novel method with high reproducibility. Brain MRI measurements included T1 and T2 lesion volumes (LVs) and their relative MTRs, and tissue class specific atrophy, MTR and DTI measures. Measures of RNFL were evaluated with OCT and GDx. We also evaluated both high and low contrast letter acuities (LCLA) in order to determine the relationship between vision, MRI metrics, and retinal structural architecture. Results: LCLA, RNFL-OCT and optic nerve radius measures showed more robust differences between NC and MS patients, and between MS patients with affected and unaffected eyes. T2-LV and T1-LV, as well as gray matter atrophy, DTI and MTR measures were related to LCLA and RNFL thickness. Unique additive variance regression models showed that both brain and optic nerve MRI measures independently accounted for about 50% of the variance in LCLA and RNFL thickness. In reverse models, about 20% of the additional independent variance was explained by optic nerve or brain MRI metrics. Conclusions: Measurement of RNFL thickness and radius of the optic nerve should be preferred to the other optic nerve MRI measures in clinical studies. Whole brain lesion and GM measures are predictive of impaired visual function with corresponding structural concomitants.
KW - Brain atrophy
KW - Diffusion tensor imaging
KW - GDx
KW - Lesion volume
KW - Low letter contrast acuity
KW - MRI
KW - Magnetization transfer imaging
KW - Multiple sclerosis
KW - OCT
KW - Optic neuritis
UR - http://www.scopus.com/inward/record.url?scp=67349265946&partnerID=8YFLogxK
U2 - 10.1016/j.jns.2009.04.010
DO - 10.1016/j.jns.2009.04.010
M3 - Article
C2 - 19439327
AN - SCOPUS:67349265946
SN - 0022-510X
VL - 282
SP - 96
EP - 105
JO - Journal of the Neurological Sciences
JF - Journal of the Neurological Sciences
IS - 1-2
ER -