Relationship between electrode position and temporal modulation sensitivity in cochlear implant users: Are close electrodes always better?

Ning Zhou, Xuyang Shi, Omkar Dixit, Jill B. Firszt, Timothy A. Holden

Research output: Contribution to journalArticlepeer-review


Temporal modulation sensitivity has been studied extensively for cochlear implant (CI) users due to its strong correlation to speech recognition outcomes. Previous studies reported that temporal modulation detection thresholds (MDTs) vary across the tonotopic axis and attributed this variation to patchy neural survival. However, correlates of neural health identified in animal models depend on electrode position in humans. Nonetheless, the relationship between MDT and electrode location has not been explored. We tested 13 ears for the effect of distance on modulation sensitivity, specifically targeting the question of whether electrodes closer to the modiolus are universally beneficial. Participants in this study were postlingually deafened and users of Cochlear Nucleus CIs. The distance of each electrode from the medial wall (MW) of the cochlea and mid-modiolar axis (MMA) was measured from scans obtained using computerized tomography (CT) imaging. The distance measures were correlated with slopes of spatial tuning curves measured on selected electrodes to investigate if electrode position accounts, at least in part, for the width of neural excitation. In accordance with previous findings, electrode position explained 24% of the variance in slopes of the spatial tuning curves. All functioning electrodes were also measured for MDTs. Five ears showed a positive correlation between MDTs and at least one distance measure across the array; 6 ears showed negative correlations and the remaining two ears showed no relationship. The ears showing positive MDT-distance correlations, thus benefiting from electrodes being close to the neural elements, were those who performed better on the two speech recognition measures, i.e., speech reception thresholds (SRTs) and recognition of the AzBio sentences. These results could suggest that ears able to take advantage of the proximal placement of electrodes are likely to have better speech recognition outcomes. Previous histological studies of humans demonstrated that speech recognition is correlated with spiral ganglion cell counts. Alternatively, ears with good speech recognition outcomes may have good overall neural health, which is a precondition for close electrodes to produce spatially confined neural excitation patterns that facilitate modulation sensitivity. These findings suggest that the methods to reduce channel interaction, e.g., perimodiolar electrode array or current focusing, may only be beneficial for a subgroup of CI users. Additionally, it suggests that estimating neural survival preoperatively is important for choosing the most appropriate electrode array type (perimodiolar vs. lateral wall) for optimal implant function.

Original languageEnglish
Article numbere12467
Issue number2
StatePublished - Feb 2023


  • Computerized tomography (CT)
  • Electrode location
  • Mid-modiolar axis (MMA)
  • Modulation detection thresholds (MDTs)
  • Perimodiolar electrodes
  • Speech reception thresholds (SRTs)


Dive into the research topics of 'Relationship between electrode position and temporal modulation sensitivity in cochlear implant users: Are close electrodes always better?'. Together they form a unique fingerprint.

Cite this