Abstract
Cell migration requires the regulated and dynamic turnover of adhesive complexes. We have previously demonstrated that the calcium-dependent protease, calpain, regulates the organization of adhesive complexes and cell detachment during cell migration. Evidence is now provided that inhibiting calpain through over-expression of the endogenous inhibitor of calpain, calpastatin, and pharmacological inhibitors results in an inhibition of adhesive complex disassembly with stabilization of GFP-vinculin and GFP/RFP-zyxin at the cell periphery. Calpain was also required for the microtubule-mediated turnover of adhesive complex sites after nocodazole wash-out, suggesting that calpain may mediate focal complex disassembly downstream of microtubules. Using dual imaging of RFP-zyxin and GFP-α-actinin, we observed a temporal and spatial relationship between α-actinin localization to focal contacts and the subsequent disassembly or translocation of RFP-zyxin containing focal complexes in areas of cell retraction. Calpain inhibition disrupted α-actinin localization to zyxin-containing focal contacts and focal complex disassembly or translocation to the cell center. In addition, disrupting α-actinin localization to focal complexes through expression of the α-actinin rod domain, but not the head domain, resulted in inhibition of focal adhesion disassembly similar to calpain inhibition. Our studies suggest a novel mechanism of action whereby calpain may modulate α-actinin localization into focal complexes and their subsequent disassembly or translocation.
Original language | English |
---|---|
Pages (from-to) | 3415-3425 |
Number of pages | 11 |
Journal | Journal of cell science |
Volume | 115 |
Issue number | 17 |
State | Published - Sep 1 2002 |
Keywords
- α-actinin
- Calpain
- Cytoskeleton
- Focal adhesion
- Migration