Regional Neuroanatomic Effects on Brain Age Inferred Using Magnetic Resonance Imaging and Ridge Regression

Alzheimer’s Disease Neuroimaging Initiative, Roy J. Massett, Alexander S. Maher, Phoebe E. Imms, Anar Amgalan, Nikhil N. Chaudhari, Nahian F. Chowdhury, Andrei Irimia, Michael W. Weiner, Paul Aisen, Ronald Petersen, Clifford R. Jack, William Jagust, John Q. Trojanowki, Arthur W. Toga, Laurel Beckett, Robert C. Green, Andrew J. Saykin, John C. Morris, Richard J. PerrinLeslie M. Shaw, Zaven Khachaturian, Maria Carrillo, William Potter, Lisa Barnes, Marie Bernard, Hector González, Carole Ho, John K. Hsiao, Jonathan Jackson, Eliezer Masliah, Donna Masterman, Ozioma Okonkwo, Laurie Ryan, Nina Silverberg, Adam Fleisher, Diana Truran Sacrey, Juliet Fockler, Cat Conti, Dallas Veitch, John Neuhaus, Chengshi Jin, Rachel Nosheny, Miriam Ashford, Derek Flenniken, Adrienne Kormos, Tom Montine, Michael Rafii, Rema Raman, Gustavo Jimenez, Michael Donohue, Devon Gessert, Jennifer Salazar, Caileigh Zimmerman, Yuliana Cabrera, Sarah Walter, Garrett Miller, Godfrey Coker, Taylor Clanton, Lindsey Hergesheimer, Stephanie Smith, Olusegun Adegoke, Payam Mahboubi, Shelley Moore, Jeremy Pizzola, Elizabeth Shaffer, Brittany Sloan, Danielle Harvey, Arvin Forghanian-Arani, Bret Borowski, Chad Ward, Christopher Schwarz, David Jones, Jeff Gunter, Kejal Kantarci, Matthew Senjem, Prashanthi Vemuri, Robert Reid, Nick C. Fox, Ian Malone, Paul Thompson, Sophia I. Thomopoulos, Talia M. Nir, Neda Jahanshad, Charles DeCarli, Alexander Knaack, Evan Fletcher, Duygu Tosun-Turgut, Stephanie Rossi Chen, Mark Choe, Karen Crawford, Paul A. Yushkevich, Sandhitsu Das, Robert A. Koeppe, Eric M. Reiman, Kewei Chen, Chet Mathis, Susan Landau, Richard Perrin, Nigel J. Cairns, Erin Householder, Erin Franklin, Haley Bernhardt, Lisa Taylor-Reinwald, Leslie M. Shaw, John Q. Trojanowki, Magdalena Korecka, Michal Figurski, Karen Crawford, Scott Neu, Andrew J. Saykin, Kwangsik Nho, Shannon L. Risacher, Liana G. Apostolova, Li Shen, Tatiana M. Foroud, Kelly Nudelman, Kelley Faber, Kristi Wilmes, Leon Thal, John K. Hsiao, Lisa C. Silbert, Betty Lind, Rachel Crissey, Jeffrey A. Kaye, Raina Carter, Sara Dolen, Joseph Quinn, Lon S. Schneider, Sonia Pawluczyk, Mauricio Becerra, Liberty Teodoro, Karen Dagerman, Bryan M. Spann, James Brewer, Helen Vanderswag, Adam Fleisher, Jaimie Ziolkowski, Judith L. Heidebrink, Lisa Zbizek-Nulph, Joanne L. Lord, Sara S. Mason, Colleen S. Albers, David Knopman, Kris Johnson, Javier Villanueva-Meyer, Valory Pavlik, Nathaniel Pacini, Ashley Lamb, Joseph S. Kass, Rachelle S. Doody, Victoria Shibley, Munir Chowdhury, Susan Rountree, Mimi Dang, Yaakov Stern, Lawrence S. Honig, Akiva Mintz, Beau Ances, David Winkfield, Maria Carroll, Georgia Stobbs-Cucchi, Angela Oliver, Mary L. Creech, Mark A. Mintun, Stacy Schneider, David Geldmacher, Marissa Natelson Love, Randall Griffith, David Clark, John Brockington, Daniel Marson, Hillel Grossman, Martin A. Goldstein, Jonathan Greenberg, Effie Mitsis, Raj C. Shah, Melissa Lamar, Patricia Samuels, Ranjan Duara, Maria T. Greig-Custo, Rosemarie Rodriguez, Marilyn Albert, Chiadi Onyike, Leonie Farrington, Scott Rudow, Rottislav Brichko, Stephanie Kielb, Amanda Smith, Balebail Ashok Raj, Kristin Fargher, Martin Sadowski, Thomas Wisniewski, Melanie Shulman, Arline Faustin, Julia Rao, Karen M. Castro, Anaztasia Ulysse, Shannon Chen, Kyle Womack, Kyle Womack

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

The biological age of the brain differs from its chronological age (CA) and can be used as biomarker of neural/cognitive disease processes and as predictor of mortality. Brain age (BA) is often estimated from magnetic resonance images (MRIs) using machine learning (ML) that rarely indicates how regional brain features contribute to BA. Leveraging an aggregate training sample of 3 418 healthy controls (HCs), we describe a ridge regression model that quantifies each region’s contribution to BA. After model testing on an independent sample of 651 HCs, we compute the coefficient of partial determination R̄2 p for each regional brain volume to quantify its contribution to BA. Model performance is also evaluated using the correlation r between chronological and biological ages, the mean absolute error (MAE ) and mean squared error (MSE) of BA estimates. On training data, r = 0.92, MSE = 70.94 years, MAE = 6.57 years, and R̄2 = 0.81; on test data, r = 0.90, MSE = 81.96 years, MAE = 7.00 years, and R̄2 = 0.79. The regions whose volumes contribute most to BA are the nucleus accumbens (R̄2 p = 7.27%), inferior temporal gyrus (R̄2 p = 4.03%), thalamus (R̄2 p = 3.61%), brainstem (R̄2 p = 3.29%), posterior lateral sulcus (R̄2 p = 3.22%), caudate nucleus (R̄2 p = 3.05%), orbital gyrus (R̄2 p = 2.96%), and precentral gyrus (R̄2 p = 2.80%). Our ridge regression, although outperformed by the most sophisticated ML approaches, identifies the importance and relative contribution of each brain structure to overall BA. Aside from its interpretability and quasi-mechanistic insights, our model can be used to validate future ML approaches for BA estimation.

Original languageEnglish
Pages (from-to)872-881
Number of pages10
JournalJournals of Gerontology - Series A Biological Sciences and Medical Sciences
Volume78
Issue number6
DOIs
StatePublished - Jun 1 2023

Keywords

  • Brain aging
  • Cognitive decline
  • Human aging
  • Imaging

Fingerprint

Dive into the research topics of 'Regional Neuroanatomic Effects on Brain Age Inferred Using Magnetic Resonance Imaging and Ridge Regression'. Together they form a unique fingerprint.

Cite this