Regional myocardial perfusion defects during exercise, as assessed by three dimensional integration of morphology and function, in relation to abnormal endothelium dependent vasoreactivity of the coronary microcirculation

T. H. Schindler, E. Nitzsche, N. Magosaki, I. Brink, M. Mix, M. Olschewski, U. Solzbach, Hanjörg Just

Research output: Contribution to journalArticle

27 Scopus citations

Abstract

Objective: To test the hypothesis that scintigraphic regional myocardial perfusion defects during exercise in patients with normal coronary angiography may be related to abnormal endothelium dependent vasoreactivity of the corresponding myocardial territory in response to cold pressor testing. Methods: 38 patients were classified into two groups according to the presence or absence of exercise induced scintigraphic myocardial perfusion defects. A cold pressor test was done in all patients during routine coronary angiography, followed by dynamic positron emission tomography to establish coronary blood flow mediated vasoreactivity of the epicardial coronary artery and the myocardial territories supplied by the left anterior descending, left circumflex, and right coronary arteries. Results: 28 patients had regional myocardial perfusion defects while 10 had normal scintigraphic imaging. The three dimensional scintigraphic fusion image revealed 49 regional myocardial perfusion defects with a mean (SD) reversibility of the original stress defect of 20 (3)%. In patients with exercise induced regional myocardial perfusion defects, the responses of epicardial luminal area and regional myocardial blood flow (RMBF) to cold pressor testing were reduced compared with patients with normal perfusion imaging (epicardial luminal area: 5.2 (1.2) to 4.2 (0.86) mm2 v 4.7 (0.5) to 5.8 (0.5) mm2; RMBF: 0.75 (0.16) to 0.78 (0.20) ml/g/min v 0.75 (0.15) to 1.38 (0.26) ml/g/min; p ≤ 0.03, respectively). In patients with regional abnormal scintigraphic perfusion, the corresponding RMBF response to cold pressor testing was more severely impaired than the mean myocardial blood flow in the remaining two vascular territories, but the difference was not significant (0.75 (0.16) to 0.78 (0.20) ml/g/min v 0.75 (0.10) to 0.87 (0.12) ml/g/min; NS). The endothelium independent increase in RMBF induced by glyceryl trinitrate did not differ between patients with exercise induced myocardial perfusion defects and those with normal perfusion images (0.75 (0.16) to 0.94 (0.09) ml/g/min v 0.75 (0.15) to 0.94 (0.09) ml/g/min; NS). There was a highly significant correlation between the endothelium dependent responses of RMBF to cold pressor testing and the severity of exercise induced scintigraphic regional myocardial perfusion defects (r = 0.95, p = 0.001). Conclusions: Exercise induced scintigraphic regional myocardial perfusion defects in patients with angina but normal coronary angiography may be related to abnormal endothelium dependent vasoreactivity of the corresponding myocardial territory.

Original languageEnglish
Pages (from-to)517-526
Number of pages10
JournalHeart
Volume89
Issue number5
DOIs
StatePublished - May 1 2003

Fingerprint Dive into the research topics of 'Regional myocardial perfusion defects during exercise, as assessed by three dimensional integration of morphology and function, in relation to abnormal endothelium dependent vasoreactivity of the coronary microcirculation'. Together they form a unique fingerprint.

  • Cite this