Abstract
The purpose of this study was to evaluate whether a spacer inserted in the prerectal space could reduce modeled rectal dose and toxicity rates for patients with prostate cancer treated in silico with pencil beam scanning (PBS) proton therapy. A total of 20 patients were included in this study who received photon therapy (12 with rectal spacer (DuraSeal™ gel) and 8 without). Two PBS treatment plans were retrospectively created for each patient using the following beam arrangements: (1) lateral- opposed (LAT) fields and (2) left and right anterior oblique (LAO/RAO) fields. Dose volume histograms (DVH) were generated for the prostate, rectum, bladder, and right and left femoral heads. The normal tissue complication probability (NTCP) for ≥grade 2 rectal toxicity was calculated using the Lyman-Kutcher-Burman model and compared between patients with and without the rectal spacer. A significantly lower mean rectal DVH was achieved in patients with rectal spacer compared to those without. For LAT plans, the mean rectal V70 with and without rectal spacer was 4.19 and 13.5%, respectively. For LAO/RAO plans, the mean rectal V70 with and without rectal spacer was 5.07 and 13.5%, respectively. No significant differences were found in any rectal dosimetric parameters between the LAT and the LAO/RAO plans generated with the rectal spacers. We found that ≥ 9 mm space resulted in a significant decrease in NTCP modeled for ≥grade 2 rectal toxicity. Rectal spacers can significantly decrease modeled rectal dose and predicted ≥grade 2 rectal toxicity in prostate cancer patients treated in silico with PBS. A minimum of 9 mm separation between the prostate and anterior rectal wall yields the largest benefit.
Original language | English |
---|---|
Pages (from-to) | 32-39 |
Number of pages | 8 |
Journal | Journal of applied clinical medical physics |
Volume | 18 |
Issue number | 1 |
DOIs | |
State | Published - 2017 |
Keywords
- Prostate cancer
- Proton beam scanning
- Rectal spacers