TY - JOUR
T1 - Rationale and design for the myocardial ischemia and transfusion (MINT) randomized clinical trial
AU - on-behalf-of-the-MINT-Investigators
AU - Carson, Jeffrey L.
AU - Brooks, Maria Mori
AU - Chaitman, Bernard R.
AU - Alexander, John H.
AU - Goodman, Shaun G.
AU - Bertolet, Marnie
AU - Abbott, J. Dawn
AU - Cooper, Howard A.
AU - Rao, Sunil V.
AU - Triulzi, Darrell J.
AU - Fergusson, Dean A.
AU - Kostis, William J.
AU - Noveck, Helaine
AU - Simon, Tabassome
AU - Steg, Philippe Gabriel
AU - DeFilippis, Andrew P.
AU - Goldsweig, Andrew M.
AU - Lopes, Renato D.
AU - White, Harvey
AU - Alsweiler, Caroline
AU - Morton, Erin
AU - Hébert, Paul C.
AU - Ghafghazi, Shahab
AU - Wood, Frances
AU - Menegus, Mark
AU - Uretsky, Barry
AU - Vallurupalli, Srikanth
AU - Maniatis, Gregory
AU - Gruberg, Luis
AU - Roswell, Robert
AU - Rossi, Joseph
AU - Abtahian, Farhad
AU - Tessalee, Meechai
AU - Barsness, Gregory
AU - Aronow, Herbert
AU - Ramanathan, Kodangudi
AU - Schmidhofer, Mark
AU - Keating, Friederike
AU - Carson, Michael
AU - Kontos, Michael
AU - Qureshi, Mansoor
AU - Clegg, Stacey
AU - Laskey, Warren
AU - Polonsky, Tamar
AU - Gupta, Rajesh
AU - Sheikh, Mujeeb Abdul
AU - Uhl, Lynne
AU - Mullen, Paul
AU - Bracey, Arthur
AU - Matthai, William
AU - Stowell, Christopher
AU - Dudzinski, David
AU - Marhefka, Gregary
AU - Weinstock, Perry
AU - Lawson, William
AU - Keller, Norma
AU - Yuriditsky, Eugene
AU - Thomas, Michael
AU - Jacobs, Alice
AU - Hochberg, Claudia
AU - Siddiqi, Omar
AU - Schulman-Marcus, Joshua
AU - Torosoff, Mikhail
AU - Gitter, Michael
AU - Dai, Xuming
AU - Traverse, Jay
AU - McCamant, Eric
AU - Scott, Jason
AU - Swaminathan, Rajesh
AU - Rao, Sunil
AU - Salisbury, Adam
AU - Landers, David
AU - Raveendran, Ganesh
AU - Ebrahimi, Ramin
AU - Bach, Richard
AU - Delehanty, Joseph
AU - Shah, Raj C.
AU - Brener, Sorin
AU - Doroshow, Jonathan
AU - Caixeta, Adriano
AU - Precoma, Dalton
AU - Dall'Orto, Frederico Toledo Campo
AU - De Andrade, Pedro Beraldo
AU - Dracoulakis, Marianna
AU - Maia, Lília Nigro
AU - Ritt, Luiz Eduardo Fontelles
AU - Quadros, Alexandre
AU - Filho, Dário Celestino Sobral
AU - De Martino, Fernando
AU - Huynh, Thao
AU - Schnell, Greg
AU - Senaratne, Manohara
AU - Tandon, Vikas
AU - Neary, John
AU - Laflamme, David
AU - Dery, Jean Pierre
AU - Bainey, Kevin
AU - Haichin, Richard
AU - Dehghani, Payam
AU - Quraishi, Ata Ur Rehman
AU - Potter, Brian J.
AU - Carrier, François Martin
AU - Goldfarb, Michael
AU - Fordyce, Christopher
AU - Sia, Ying Tung
AU - Daneault, Benoit
AU - Madan, Mina
AU - McPherson, Terry
AU - Ducas, John
AU - Minhas, Kunal
AU - Brass, Neil
AU - Bagai, Akshay
AU - Robinson, Simon
AU - Džavík, Vladimír
AU - Khan, Razi
AU - Michaud, Nicolas
AU - Steg, Gabriel
AU - Ducrocq, Gregory
AU - Puymirat, Etienne
AU - Lemesle, Gilles
AU - Ferrari, Emile
AU - Lattuca, Benoit
AU - Silvain, Johanne
AU - Vanzetto, Gérald
AU - Cetran, Laura
AU - Lhermusier, Thibault
AU - Cottin, Yves
AU - Rosamel, Yann
AU - Angoulvant, Denis
AU - Dillinger, Jean Guillaume
AU - Thuaire, Christophe
AU - Popovic, Batric
AU - Durand, Eric
AU - Bouleti, Claire
AU - Roubille, François
AU - Delorme, Laurent
AU - Crozier, Ian
AU - Benatar, Jocelyne
AU - Nandra, Samraj
AU - Ternouth, Ian
AU - Fisher, Nick
AU - Brieger, David
AU - Hillis, Graham
N1 - Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2023/3
Y1 - 2023/3
N2 - Background: Accumulating evidence from clinical trials suggests that a lower (restrictive) hemoglobin threshold (<8% g/dL) for red blood cell (RBC) transfusion, compared with a higher (liberal) threshold (≥10 g/dL) is safe. However, in anemic patients with acute myocardial infarction (MI), maintaining a higher hemoglobin level may increase oxygen delivery to vulnerable myocardium resulting in improved clinical outcomes. Conversely, RBC transfusion may result in increased blood viscosity, vascular inflammation, and reduction in available nitric oxide resulting in worse clinical outcomes. We hypothesize that a liberal transfusion strategy would improve clinical outcomes as compared to a more restrictive strategy. Methods: We will enroll 3500 patients with acute MI (type 1, 2, 4b or 4c) as defined by the Third Universal Definition of MI and a hemoglobin <10 g/dL at 144 centers in the United States, Canada, France, Brazil, New Zealand, and Australia. We randomly assign trial participants to a liberal or restrictive transfusion strategy. Participants assigned to the liberal strategy receive transfusion of RBCs sufficient to raise their hemoglobin to at least 10 g/dL. Participants assigned to the restrictive strategy are permitted to receive transfusion of RBCs if the hemoglobin falls below 8 g/dL or for persistent angina despite medical therapy. We will contact each participant at 30 days to assess clinical outcomes and at 180 days to ascertain vital status. The primary end point is a composite of all-cause death or recurrent MI through 30 days following randomization. Secondary end points include all-cause mortality at 30 days, recurrent adjudicated MI, and the composite outcome of all-cause mortality, nonfatal recurrent MI, ischemia driven unscheduled coronary revascularization (percutaneous coronary intervention or coronary artery bypass grafting), or readmission to the hospital for ischemic cardiac diagnosis within 30 days. The trial will assess multiple tertiary end points. Conclusions: The MINT trial will inform RBC transfusion practice in patients with acute MI.
AB - Background: Accumulating evidence from clinical trials suggests that a lower (restrictive) hemoglobin threshold (<8% g/dL) for red blood cell (RBC) transfusion, compared with a higher (liberal) threshold (≥10 g/dL) is safe. However, in anemic patients with acute myocardial infarction (MI), maintaining a higher hemoglobin level may increase oxygen delivery to vulnerable myocardium resulting in improved clinical outcomes. Conversely, RBC transfusion may result in increased blood viscosity, vascular inflammation, and reduction in available nitric oxide resulting in worse clinical outcomes. We hypothesize that a liberal transfusion strategy would improve clinical outcomes as compared to a more restrictive strategy. Methods: We will enroll 3500 patients with acute MI (type 1, 2, 4b or 4c) as defined by the Third Universal Definition of MI and a hemoglobin <10 g/dL at 144 centers in the United States, Canada, France, Brazil, New Zealand, and Australia. We randomly assign trial participants to a liberal or restrictive transfusion strategy. Participants assigned to the liberal strategy receive transfusion of RBCs sufficient to raise their hemoglobin to at least 10 g/dL. Participants assigned to the restrictive strategy are permitted to receive transfusion of RBCs if the hemoglobin falls below 8 g/dL or for persistent angina despite medical therapy. We will contact each participant at 30 days to assess clinical outcomes and at 180 days to ascertain vital status. The primary end point is a composite of all-cause death or recurrent MI through 30 days following randomization. Secondary end points include all-cause mortality at 30 days, recurrent adjudicated MI, and the composite outcome of all-cause mortality, nonfatal recurrent MI, ischemia driven unscheduled coronary revascularization (percutaneous coronary intervention or coronary artery bypass grafting), or readmission to the hospital for ischemic cardiac diagnosis within 30 days. The trial will assess multiple tertiary end points. Conclusions: The MINT trial will inform RBC transfusion practice in patients with acute MI.
UR - http://www.scopus.com/inward/record.url?scp=85147895144&partnerID=8YFLogxK
U2 - 10.1016/j.ahj.2022.11.015
DO - 10.1016/j.ahj.2022.11.015
M3 - Article
C2 - 36417955
AN - SCOPUS:85147895144
SN - 0002-8703
VL - 257
SP - 120
EP - 129
JO - American heart journal
JF - American heart journal
ER -