TY - JOUR
T1 - Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer's disease families
AU - Cruchaga, Carlos
AU - Chakraverty, Sumitra
AU - Mayo, Kevin
AU - Vallania, Francesco L.M.
AU - Mitra, Robi D.
AU - Faber, Kelley
AU - Williamson, Jennifer
AU - Bird, Tom
AU - Diaz-Arrastia, Ramon
AU - Foroud, Tatiana M.
AU - Boeve, Bradley F.
AU - Graff-Radford, Neill R.
AU - St. Jean, Pamela
AU - Lawson, Michael
AU - Ehm, Margaret G.
AU - Mayeux, Richard
AU - Goate, Alison M.
AU - for the NIA-LOAD - NCRAD Family Study Consortium, the NIA-LOAD - NCRAD Family Study Consortium
N1 - Funding Information:
The following investigators and Alzheimer's Disease Centers participated in the Study: Boston University Robert Green, Neil Kowall, Lindsay Farrer; Columbia University Jennifer Williamson, Vincent Santana; Duke University Donald Schmechel, Perry Gaskell, Kathleen Welsh-Bohmer, Margaret Pericak-Vance; Indiana University, Bernardino Ghetti, Martin R. Farlow, Kelly Horner; Massachusetts General Hospital John H. Growdon, Deborah Blacker, Rudolph E. Tanzi, Bradley T. Hyman; Mayo Clinic- Rochester Bradley Boeve, Karen Kuntz, Lindsay Norgaard, Nathan Larson; Mayo Clinic-Jacksonville Dana Kistler, Fracine Parfitt, Jenny Haddwow; Mount Sinai School of Medicine Jeremy Silverman, Michal Schnaider Beeri, Mary Sano, Joy Wang, Rachel Lally; Northwestern University Nancy Johnson, Marcel Mesulum, Sandra Weintraub, Eileen Bigio; Oregon Health and Science University Jeffery Kaye, Patricia Kramer, Jessica Payne-Murphy; Rush University David Bennett, Holli Jacobs, Jeen-Soo Chang, Danielle Arends; University of Alabama at Birmingham Lindy Harrell; University of California, Los Angeles George Bartzokis, Jeffery Cummings, Po H Lu, Usha Toland; University of Kentucky William Markesbery, Charles Smith, Alise Brickhouse; University of Pennsylvania John Trojanowski, Vivianna Van Deerlin, Elisabeth McCarty Wood; University of Pittsburgh Steven DeKosky, Robert Sweet, Elise Weamer; University of Southern California I Helena Chui, Arousiak Varpetian; University of Texas Southwestern Ramon Diaz-Arrastia, Roger Rosenberg, Barbara Davis; University of Washington Thomas Bird, Malia Rumbaugh, Gerard D. Schellenberg, Murray Raskind; Washington University at St Louis Alison Goate, John Morris, Joanne Norton, Denise Levitch, Betsy Grant, Mary Coats.” and R37AG15473 (RM). Samples from the National Cell Repository for Alzheimer's Disease (NCRAD), which receives government support under a cooperative agreement grant (U24 AG21886) awarded by the National Institute on Aging (NIA), were used in this study.
PY - 2012/2/1
Y1 - 2012/2/1
N2 - Pathogenic mutations in APP, PSEN1, PSEN2, MAPT and GRN have previously been linked to familial early onset forms of dementia. Mutation screening in these genes has been performed in either very small series or in single families with late onset AD (LOAD). Similarly, studies in single families have reported mutations in MAPT and GRN associated with clinical AD but no systematic screen of a large dataset has been performed to determine how frequently this occurs. We report sequence data for 439 probands from late-onset AD families with a history of four or more affected individuals. Sixty sequenced individuals (13.7%) carried a novel or pathogenic mutation. Eight pathogenic variants, (one each in APP and MAPT, two in PSEN1 and four in GRN) three of which are novel, were found in 14 samples. Thirteen additional variants, present in 23 families, did not segregate with disease, but the frequency of these variants is higher in AD cases than controls, indicating that these variants may also modify risk for disease. The frequency of rare variants in these genes in this series is significantly higher than in the 1,000 genome project (p = 5.09×10 -5; OR = 2.21; 95%CI = 1.49-3.28) or an unselected population of 12,481 samples (p = 6.82×10 -5; OR = 2.19; 95%CI = 1.347-3.26). Rare coding variants in APP, PSEN1 and PSEN2, increase risk for or cause late onset AD. The presence of variants in these genes in LOAD and early-onset AD demonstrates that factors other than the mutation can impact the age at onset and penetrance of at least some variants associated with AD. MAPT and GRN mutations can be found in clinical series of AD most likely due to misdiagnosis. This study clearly demonstrates that rare variants in these genes could explain an important proportion of genetic heritability of AD, which is not detected by GWAS.
AB - Pathogenic mutations in APP, PSEN1, PSEN2, MAPT and GRN have previously been linked to familial early onset forms of dementia. Mutation screening in these genes has been performed in either very small series or in single families with late onset AD (LOAD). Similarly, studies in single families have reported mutations in MAPT and GRN associated with clinical AD but no systematic screen of a large dataset has been performed to determine how frequently this occurs. We report sequence data for 439 probands from late-onset AD families with a history of four or more affected individuals. Sixty sequenced individuals (13.7%) carried a novel or pathogenic mutation. Eight pathogenic variants, (one each in APP and MAPT, two in PSEN1 and four in GRN) three of which are novel, were found in 14 samples. Thirteen additional variants, present in 23 families, did not segregate with disease, but the frequency of these variants is higher in AD cases than controls, indicating that these variants may also modify risk for disease. The frequency of rare variants in these genes in this series is significantly higher than in the 1,000 genome project (p = 5.09×10 -5; OR = 2.21; 95%CI = 1.49-3.28) or an unselected population of 12,481 samples (p = 6.82×10 -5; OR = 2.19; 95%CI = 1.347-3.26). Rare coding variants in APP, PSEN1 and PSEN2, increase risk for or cause late onset AD. The presence of variants in these genes in LOAD and early-onset AD demonstrates that factors other than the mutation can impact the age at onset and penetrance of at least some variants associated with AD. MAPT and GRN mutations can be found in clinical series of AD most likely due to misdiagnosis. This study clearly demonstrates that rare variants in these genes could explain an important proportion of genetic heritability of AD, which is not detected by GWAS.
UR - http://www.scopus.com/inward/record.url?scp=84856541277&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0031039
DO - 10.1371/journal.pone.0031039
M3 - Article
C2 - 22312439
AN - SCOPUS:84856541277
SN - 1932-6203
VL - 7
JO - PloS one
JF - PloS one
IS - 2
M1 - e31039
ER -