TY - JOUR
T1 - Rapid skeletal turnover in a radiographic mimic of osteopetrosis
AU - Whyte, Michael P.
AU - Madson, Katherine L.
AU - Mumm, Steven
AU - McAlister, William H.
AU - Novack, Deborah V.
AU - Blair, Jo C.
AU - Helliwell, Timothy R.
AU - Stolina, Marina
AU - Abernethy, Laurence J.
AU - Shaw, Nicholas J.
N1 - Publisher Copyright:
© 2014 American Society for Bone and Mineral Research.
PY - 2014/12/1
Y1 - 2014/12/1
N2 - Among the high bone mass disorders, the osteopetroses reflect osteoclast failure that prevents skeletal resorption and turnover, leading to reduced bone growth and modeling and characteristic histopathological and radiographic findings. We report an 11-yearold boy with a new syndrome that radiographically mimics osteopetrosis (OPT), but features rapid skeletal turnover. He presented at age 21 months with a parasellar, osteoclast-rich giant cell granuloma. Radiographs showed a dense skull, generalized osteosclerosis and cortical thickening, medullary cavity narrowing, and diminished modeling of tubular bones. His serum alkaline phosphatase was >5000 IU/L (normal <850 IU/L). After partial resection, the granuloma re-grew but then regressed and stabilized during 3 years of uncomplicated pamidronate treatment. His hyperphosphatasemia transiently diminished, but all bone turnover markers, especially those of apposition, remained elevated. Two years after pamidronate therapy stopped, bone mineral density (BMD) Z-scores reached +9.1 and +5.8 in the lumbar spine and hip, respectively, and iliac crest histopathology confirmed rapid bone remodeling. Serum multiplex biomarker profiling was striking for low sclerostin. Mutation analysis was negative for activation of lipoprotein receptorrelated protein 4 (LRP4), LRP5, or TGFβ1, and for defective sclerostin (SOST), osteoprotegerin (OPG), RANKL, RANK, SQSTM1, or sFRP1. Microarray showed no notable copy number variation. Studies of his nonconsanguineous parents were unremarkable. The etiology and pathogenesis of this unique syndrome are unknown.
AB - Among the high bone mass disorders, the osteopetroses reflect osteoclast failure that prevents skeletal resorption and turnover, leading to reduced bone growth and modeling and characteristic histopathological and radiographic findings. We report an 11-yearold boy with a new syndrome that radiographically mimics osteopetrosis (OPT), but features rapid skeletal turnover. He presented at age 21 months with a parasellar, osteoclast-rich giant cell granuloma. Radiographs showed a dense skull, generalized osteosclerosis and cortical thickening, medullary cavity narrowing, and diminished modeling of tubular bones. His serum alkaline phosphatase was >5000 IU/L (normal <850 IU/L). After partial resection, the granuloma re-grew but then regressed and stabilized during 3 years of uncomplicated pamidronate treatment. His hyperphosphatasemia transiently diminished, but all bone turnover markers, especially those of apposition, remained elevated. Two years after pamidronate therapy stopped, bone mineral density (BMD) Z-scores reached +9.1 and +5.8 in the lumbar spine and hip, respectively, and iliac crest histopathology confirmed rapid bone remodeling. Serum multiplex biomarker profiling was striking for low sclerostin. Mutation analysis was negative for activation of lipoprotein receptorrelated protein 4 (LRP4), LRP5, or TGFβ1, and for defective sclerostin (SOST), osteoprotegerin (OPG), RANKL, RANK, SQSTM1, or sFRP1. Microarray showed no notable copy number variation. Studies of his nonconsanguineous parents were unremarkable. The etiology and pathogenesis of this unique syndrome are unknown.
KW - Biomarker profiling
KW - Giant cell granuloma
KW - Osteosclerosis
KW - Sclerostin
UR - http://www.scopus.com/inward/record.url?scp=84918502463&partnerID=8YFLogxK
U2 - 10.1002/jbmr.2289
DO - 10.1002/jbmr.2289
M3 - Article
C2 - 24919763
AN - SCOPUS:84918502463
SN - 0884-0431
VL - 29
SP - 2601
EP - 2609
JO - Journal of Bone and Mineral Research
JF - Journal of Bone and Mineral Research
IS - 12
ER -