TY - JOUR
T1 - Rapid acceptance testing of modern linac using on-board MV and kV imaging systems:
AU - Yaddanapudi, Sridhar
AU - Cai, Bin
AU - Harry, Taylor
AU - Dolly, Steven
AU - Sun, Baozhou
AU - Li, Hua
AU - Stinson, Keith
AU - Noel, Camille
AU - Santanam, Lakshmi
AU - Pawlicki, Todd
AU - Mutic, Sasa
AU - Goddu, S. Murty
PY - 2017/7
Y1 - 2017/7
N2 - Purpose: The purpose of this study was to develop a novel process for using on-board MV and kV Electronic Portal Imaging Devices (EPIDs) to perform linac acceptance testing (AT) for two reasons: (a) to standardize the assessment of new equipment performance, and (b) to reduce the time to clinical use while reducing physicist workload. Methods and materials: In this study, Varian TrueBeam linacs equipped with amorphous silicon-based EPID (aS1000) were used. The conventional set of AT tests and tolerances were used as a baseline guide. A novel methodology was developed or adopted from published literature to perform as many tests as possible using the MV and kV EPIDs. The developer mode on Varian TrueBeam linacs was used to automate the process. In the EPID-based approach, most of mechanical tests were conducted by acquiring images through a custom phantom and software tools were developed for quantitative analysis to extract different performance parameters. The embedded steel-spheres in a custom phantom provided both visual and radiographic guidance for beam geometry testing. For photon beams, open field EPID images were used to extract inline/crossline profiles to verify the beam energy, flatness and symmetry. EPID images through a double wedge phantom were used for evaluating electron beam properties via diagonal profile. Testing was augmented with a commercial automated application (Machine Performance Check) which was used to perform several geometric accuracy tests such as gantry, collimator rotations, and couch rotations/translations. Results: The developed process demonstrated that the tests, which required customer demonstration, were efficiently performed using EPIDs. The AT tests that were performed using EPIDs were fully automated using the developer mode on the Varian TrueBeam system, while some tests, such as the light field versus radiation field congruence, and collision interlock checks required user interaction. Conclusions: On-board imagers are quite suitable for both geometric and dosimetric testing of linac system involved in AT. Electronic format of the acquired data lends itself to benchmarking, transparency, as well as longitudinal use of AT data. While the tests were performed on a specific model of a linear accelerator, the proposed approach can be extended to other linacs.
AB - Purpose: The purpose of this study was to develop a novel process for using on-board MV and kV Electronic Portal Imaging Devices (EPIDs) to perform linac acceptance testing (AT) for two reasons: (a) to standardize the assessment of new equipment performance, and (b) to reduce the time to clinical use while reducing physicist workload. Methods and materials: In this study, Varian TrueBeam linacs equipped with amorphous silicon-based EPID (aS1000) were used. The conventional set of AT tests and tolerances were used as a baseline guide. A novel methodology was developed or adopted from published literature to perform as many tests as possible using the MV and kV EPIDs. The developer mode on Varian TrueBeam linacs was used to automate the process. In the EPID-based approach, most of mechanical tests were conducted by acquiring images through a custom phantom and software tools were developed for quantitative analysis to extract different performance parameters. The embedded steel-spheres in a custom phantom provided both visual and radiographic guidance for beam geometry testing. For photon beams, open field EPID images were used to extract inline/crossline profiles to verify the beam energy, flatness and symmetry. EPID images through a double wedge phantom were used for evaluating electron beam properties via diagonal profile. Testing was augmented with a commercial automated application (Machine Performance Check) which was used to perform several geometric accuracy tests such as gantry, collimator rotations, and couch rotations/translations. Results: The developed process demonstrated that the tests, which required customer demonstration, were efficiently performed using EPIDs. The AT tests that were performed using EPIDs were fully automated using the developer mode on the Varian TrueBeam system, while some tests, such as the light field versus radiation field congruence, and collision interlock checks required user interaction. Conclusions: On-board imagers are quite suitable for both geometric and dosimetric testing of linac system involved in AT. Electronic format of the acquired data lends itself to benchmarking, transparency, as well as longitudinal use of AT data. While the tests were performed on a specific model of a linear accelerator, the proposed approach can be extended to other linacs.
KW - EPID
KW - acceptance testing
KW - automation
KW - quality assurance
UR - http://www.scopus.com/inward/record.url?scp=85021898472&partnerID=8YFLogxK
U2 - 10.1002/mp.12294
DO - 10.1002/mp.12294
M3 - Article
C2 - 28432806
AN - SCOPUS:85021898472
VL - 44
SP - 3393
EP - 3406
JO - Medical Physics
JF - Medical Physics
SN - 0094-2405
IS - 7
ER -