TY - JOUR
T1 - Radiosynthesis and evaluation of a fluorine-18 radiotracer [18F]FS1P1 for imaging sphingosine-1-phosphate receptor 1
AU - Qiu, Lin
AU - Jiang, Hao
AU - Yu, Yanbo
AU - Gu, Jiwei
AU - Wang, Jinzhi
AU - Zhao, Haiyang
AU - Huang, Tianyu
AU - Gropler, Robert J.
AU - Klein, Robyn S.
AU - Perlmutter, Joel S.
AU - Tu, Zhude
N1 - Publisher Copyright:
This journal is © The Royal Society of Chemistry
PY - 2022/2/7
Y1 - 2022/2/7
N2 - Assessment of sphingosine-1-phosphate receptor 1 (S1PR1) expression could be a unique tool to determine the neuroinflammatory status for central nervous system (CNS) disorders. Our preclinical results indicate that PET imaging with [11C]CS1P1 radiotracer can quantitatively measure S1PR1 expression changes in different animal models of inflammatory diseases. Here we developed a multiple step F-18 labeling strategy to synthesize the radiotracer [18F]FS1P1, sharing the same structure with [11C]CS1P1. We explored a wide range of reaction conditions for the nucleophilic radiofluorination starting with the key ortho-nitrobenzaldehyde precursor 10. The tertiary amine additive TMEDA proved crucial to achieve high radiochemical yield of ortho-[18F]fluorobenzaldehyde [18F]12 starting with a small amount of precursor. Based on [18F]12, a further four-step modification was applied in one-pot to generate the target radiotracer [18F]FS1P1 with 30–50% radiochemical yield, >95% chemical and radiochemical purity, and a high molar activity (37–166.5 GBq μmol−1, decay corrected to end of synthesis, EOS). Subsequently, tissue distribution of [18F]FS1P1 in rats showed a high brain uptake (ID% g−1) of 0.48 ± 0.06 at 5 min, and bone uptake of 0.27 ± 0.03, 0.11 ± 0.02 at 5, and 120 min respectively, suggesting no in vivo defluorination. MicroPET studies showed [18F]FS1P1 has high macaque brain uptake with a standard uptake value (SUV) of ∼2.3 at 120 min. Radiometabolite analysis of macaque plasma samples indicated that [18F]FS1P1 has good metabolic stability, and no major radiometabolite confounded PET measurements of S1PR1 in nonhuman primate brain. Overall, [18F]FS1P1 is a promising F-18 S1PR1 radiotracer worthy of further clinical investigation for human use.
AB - Assessment of sphingosine-1-phosphate receptor 1 (S1PR1) expression could be a unique tool to determine the neuroinflammatory status for central nervous system (CNS) disorders. Our preclinical results indicate that PET imaging with [11C]CS1P1 radiotracer can quantitatively measure S1PR1 expression changes in different animal models of inflammatory diseases. Here we developed a multiple step F-18 labeling strategy to synthesize the radiotracer [18F]FS1P1, sharing the same structure with [11C]CS1P1. We explored a wide range of reaction conditions for the nucleophilic radiofluorination starting with the key ortho-nitrobenzaldehyde precursor 10. The tertiary amine additive TMEDA proved crucial to achieve high radiochemical yield of ortho-[18F]fluorobenzaldehyde [18F]12 starting with a small amount of precursor. Based on [18F]12, a further four-step modification was applied in one-pot to generate the target radiotracer [18F]FS1P1 with 30–50% radiochemical yield, >95% chemical and radiochemical purity, and a high molar activity (37–166.5 GBq μmol−1, decay corrected to end of synthesis, EOS). Subsequently, tissue distribution of [18F]FS1P1 in rats showed a high brain uptake (ID% g−1) of 0.48 ± 0.06 at 5 min, and bone uptake of 0.27 ± 0.03, 0.11 ± 0.02 at 5, and 120 min respectively, suggesting no in vivo defluorination. MicroPET studies showed [18F]FS1P1 has high macaque brain uptake with a standard uptake value (SUV) of ∼2.3 at 120 min. Radiometabolite analysis of macaque plasma samples indicated that [18F]FS1P1 has good metabolic stability, and no major radiometabolite confounded PET measurements of S1PR1 in nonhuman primate brain. Overall, [18F]FS1P1 is a promising F-18 S1PR1 radiotracer worthy of further clinical investigation for human use.
UR - http://www.scopus.com/inward/record.url?scp=85123968733&partnerID=8YFLogxK
U2 - 10.1039/d1ob02225c
DO - 10.1039/d1ob02225c
M3 - Article
C2 - 35029272
AN - SCOPUS:85123968733
SN - 1477-0520
VL - 20
SP - 1041
EP - 1052
JO - Organic and Biomolecular Chemistry
JF - Organic and Biomolecular Chemistry
IS - 5
ER -