Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state

Research output: Contribution to journalArticlepeer-review

307 Scopus citations

Abstract

Since Ogawa et al. (Proc Natl Acad Sci USA 1990;87:9868-9872) made the fundamental discovery of blood oxygenation level-dependent (BOLD) contrast in MRI, most efforts have been directed toward the study of dynamic BOLD (i.e., temporal changes in the MRI signal during changes in brain activity). However, very little progress has been made in elucidating the nature of BOLD contrast during the resting or baseline state of the brain, which is important for understanding normal human performance because it accounts for most of the enormous energy budget of the brain. It is also crucial for deciphering the consequences of baseline-state impairment by cerebral vascular diseases. The objective of this study was to develop a BOLD MR-based method that allows quantitative evaluation of tissue hemodynamic parameters, such as the blood volume, deoxyhemoglobin concentration, and oxygen extraction fraction (OEF). The proposed method, which we have termed quantitative BOLD (qBOLD), is based on an MR signal model that incorporates prior knowledge about brain tissue composition and considers signals from gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and blood. A 2D gradient-echo sampling of spin-echo (GESSE) pulse sequence is used for the acquisition of the MRI signal. The method is applied to estimate the hemodynamic parameters of the normal human brain in the baseline state.

Original languageEnglish
Pages (from-to)115-126
Number of pages12
JournalMagnetic resonance in medicine
Volume57
Issue number1
DOIs
StatePublished - Jan 2007

Keywords

  • BOLD
  • Brain hemodynamic
  • Brain metabolism
  • OEF
  • fMRI

Fingerprint

Dive into the research topics of 'Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state'. Together they form a unique fingerprint.

Cite this