TY - JOUR
T1 - Quantification of localized NAD+ changes reveals unique specificity of NAD+ regulation in the hypothalamus
AU - Johnson, Sean
AU - Yoshioka, Kiyoshi
AU - Brace, Cynthia S.
AU - Imai, Shin ichiro
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Recently, it has become a consensus that systemic decreases in NAD+ are a critical trigger for age-associated functional decline in multiple tissues and organs. The hypothalamus, which contains several functionally distinct subregions called nuclei, functions as a high-order control center of aging in mammals. However, due to a technical difficulty, how NAD+ levels change locally in each hypothalamic nucleus during aging remains uninvestigated. We were able to establish a new combinatorial methodology, using laser-captured microdissection (LCM) and high-performance liquid chromatography (HPLC), to accurately measure NAD+ levels in small tissue samples. We applied this methodology to examine local NAD+ changes in hypothalamic nuclei and found that NAD+ levels were decreased significantly in the arcuate nucleus (ARC), ventromedial hypothalamus (VMH), and lateral hypothalamus (LH), but not in the dorsomedial hypothalamus (DMH) of 22-month-old mice, compared to those of 3-month-old mice. The administration of nicotinamide mononucleotide (NMN) significantly increased NAD+ levels in all these hypothalamic nuclei. Interestingly, the administration of extracellular nicotinamide phosphoribosyltransferase-containing extracellular vesicles (eNampt-EVs) purified from young mice increased NAD+ levels in the ARC and DMH. These results reveal the unique specificity of NAD+ regulation in the hypothalamus during aging.
AB - Recently, it has become a consensus that systemic decreases in NAD+ are a critical trigger for age-associated functional decline in multiple tissues and organs. The hypothalamus, which contains several functionally distinct subregions called nuclei, functions as a high-order control center of aging in mammals. However, due to a technical difficulty, how NAD+ levels change locally in each hypothalamic nucleus during aging remains uninvestigated. We were able to establish a new combinatorial methodology, using laser-captured microdissection (LCM) and high-performance liquid chromatography (HPLC), to accurately measure NAD+ levels in small tissue samples. We applied this methodology to examine local NAD+ changes in hypothalamic nuclei and found that NAD+ levels were decreased significantly in the arcuate nucleus (ARC), ventromedial hypothalamus (VMH), and lateral hypothalamus (LH), but not in the dorsomedial hypothalamus (DMH) of 22-month-old mice, compared to those of 3-month-old mice. The administration of nicotinamide mononucleotide (NMN) significantly increased NAD+ levels in all these hypothalamic nuclei. Interestingly, the administration of extracellular nicotinamide phosphoribosyltransferase-containing extracellular vesicles (eNampt-EVs) purified from young mice increased NAD+ levels in the ARC and DMH. These results reveal the unique specificity of NAD+ regulation in the hypothalamus during aging.
UR - http://www.scopus.com/inward/record.url?scp=85173511531&partnerID=8YFLogxK
U2 - 10.1038/s41514-023-00098-1
DO - 10.1038/s41514-023-00098-1
M3 - Article
C2 - 36697402
AN - SCOPUS:85173511531
SN - 2731-6068
VL - 9
JO - npj Aging
JF - npj Aging
IS - 1
M1 - 1
ER -