TY - JOUR
T1 - Qualification of PET scanners for use in multicenter cancer clinical trials
T2 - The American College of Radiology Imaging Network experience
AU - Scheuermann, Joshua S.
AU - Saffer, Janet R.
AU - Karp, Joel S.
AU - Levering, Anthony M.
AU - Siegel, Barry A.
PY - 2009/7/1
Y1 - 2009/7/1
N2 - The PET Core Laboratory of the American College of Radiology Imaging Network (ACRIN) qualifies sites to participate in multicenter research trials by quantitatively reviewing submitted PET scans of uniform cylinders to verify the accuracy of scanner standardized uptake value (SUV) calibration and qualitatively reviewing clinical PET images from each site. To date, cylinder and patient data from 169 PET scanners have been reviewed, and 146 have been qualified. Methods: Each site is required to submit data from 1 uniform cylinder and 2 patient test cases. Submitted phantom data are analyzed by drawing a circular region of interest that encompasses approximately 90% of the diameter of the interior of the phantom and then recording the mean SUV and SD of each transverse slice. In addition, average SUVs are measured in the liver of submitted patient scans. These data illustrate variations of SUVs across PET scanners and across institutions, and comparison of results with values submitted by the site indicate the level of experience of PET camera operators in calculating SUVs. Results: Of 101 scanner applications for which detailed records of the qualification process were available, 12 (12%) failed because of incorrect SUV or normalization calibrations. For sites to pass, the average cylinder SUV is required to be 1.0 ± 0.1. The average SUVs for uniform cylinder images for the most common scanners evaluated - Siemens Biograph PET/CT (n = 43), GE Discovery LS PET/CT (n = 15), GE Discovery ST PET/CT (n = 34), Philips Allegro PET (n = 5), and Philips Gemini PET/CT (n = 11) - were 0.99, 1.01, 1.00, 0.98, and 0.95, respectively, and the average liver SUVs for submitted test cases were 2.34, 2.13, 2.27, 1.73, and 1.92, respectively. Conclusion: Minimizing errors in SUV measurement is critical to achieving accurate quantification in clinical trials. The experience of the ACRIN PET Core Laboratory shows that many sites are unable to maintain accurate SUV calibrations without additional training or supervision. This raises concerns about using SUVs to quantify patient data without verification.
AB - The PET Core Laboratory of the American College of Radiology Imaging Network (ACRIN) qualifies sites to participate in multicenter research trials by quantitatively reviewing submitted PET scans of uniform cylinders to verify the accuracy of scanner standardized uptake value (SUV) calibration and qualitatively reviewing clinical PET images from each site. To date, cylinder and patient data from 169 PET scanners have been reviewed, and 146 have been qualified. Methods: Each site is required to submit data from 1 uniform cylinder and 2 patient test cases. Submitted phantom data are analyzed by drawing a circular region of interest that encompasses approximately 90% of the diameter of the interior of the phantom and then recording the mean SUV and SD of each transverse slice. In addition, average SUVs are measured in the liver of submitted patient scans. These data illustrate variations of SUVs across PET scanners and across institutions, and comparison of results with values submitted by the site indicate the level of experience of PET camera operators in calculating SUVs. Results: Of 101 scanner applications for which detailed records of the qualification process were available, 12 (12%) failed because of incorrect SUV or normalization calibrations. For sites to pass, the average cylinder SUV is required to be 1.0 ± 0.1. The average SUVs for uniform cylinder images for the most common scanners evaluated - Siemens Biograph PET/CT (n = 43), GE Discovery LS PET/CT (n = 15), GE Discovery ST PET/CT (n = 34), Philips Allegro PET (n = 5), and Philips Gemini PET/CT (n = 11) - were 0.99, 1.01, 1.00, 0.98, and 0.95, respectively, and the average liver SUVs for submitted test cases were 2.34, 2.13, 2.27, 1.73, and 1.92, respectively. Conclusion: Minimizing errors in SUV measurement is critical to achieving accurate quantification in clinical trials. The experience of the ACRIN PET Core Laboratory shows that many sites are unable to maintain accurate SUV calibrations without additional training or supervision. This raises concerns about using SUVs to quantify patient data without verification.
KW - Multicenter clinical trials
KW - PET quantification
KW - Positron emission tomography
KW - Scanner calibration
KW - Standardized uptake value
UR - http://www.scopus.com/inward/record.url?scp=67650088547&partnerID=8YFLogxK
U2 - 10.2967/jnumed.108.057455
DO - 10.2967/jnumed.108.057455
M3 - Article
C2 - 19525463
AN - SCOPUS:67650088547
SN - 0161-5505
VL - 50
SP - 1187
EP - 1193
JO - Journal of Nuclear Medicine
JF - Journal of Nuclear Medicine
IS - 7
ER -