TY - GEN
T1 - QCResUNet
T2 - 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
AU - Qiu, Peijie
AU - Chakrabarty, Satrajit
AU - Nguyen, Phuc
AU - Ghosh, Soumyendu Sekhar
AU - Sotiras, Aristeidis
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
PY - 2023
Y1 - 2023
N2 - Deep learning has achieved state-of-the-art performance in automated brain tumor segmentation from magnetic resonance imaging (MRI) scans. However, the unexpected occurrence of poor-quality outliers, especially in out-of-distribution samples, hinders their translation into patient-centered clinical practice. Therefore, it is important to develop automated tools for large-scale segmentation quality control (QC). However, most existing QC methods targeted cardiac MRI segmentation which involves a single modality and a single tissue type. Importantly, these methods only provide a subject-level segmentation-quality prediction, which cannot inform clinicians where the segmentation needs to be refined. To address this gap, we proposed a novel network architecture called QCResUNet that simultaneously produces segmentation-quality measures as well as voxel-level segmentation error maps for brain tumor segmentation QC. To train the proposed model, we created a wide variety of segmentation-quality results by using i) models that have been trained for a varying number of epochs with different modalities; and ii) a newly devised segmentation-generation method called SegGen. The proposed method was validated on a large public brain tumor dataset with segmentations generated by different methods, achieving high performance on the prediction of segmentation-quality metric as well as voxel-wise localization of segmentation errors. The implementation will be publicly available at https://github.com/peijie-chiu/QC-ResUNet.
AB - Deep learning has achieved state-of-the-art performance in automated brain tumor segmentation from magnetic resonance imaging (MRI) scans. However, the unexpected occurrence of poor-quality outliers, especially in out-of-distribution samples, hinders their translation into patient-centered clinical practice. Therefore, it is important to develop automated tools for large-scale segmentation quality control (QC). However, most existing QC methods targeted cardiac MRI segmentation which involves a single modality and a single tissue type. Importantly, these methods only provide a subject-level segmentation-quality prediction, which cannot inform clinicians where the segmentation needs to be refined. To address this gap, we proposed a novel network architecture called QCResUNet that simultaneously produces segmentation-quality measures as well as voxel-level segmentation error maps for brain tumor segmentation QC. To train the proposed model, we created a wide variety of segmentation-quality results by using i) models that have been trained for a varying number of epochs with different modalities; and ii) a newly devised segmentation-generation method called SegGen. The proposed method was validated on a large public brain tumor dataset with segmentations generated by different methods, achieving high performance on the prediction of segmentation-quality metric as well as voxel-wise localization of segmentation errors. The implementation will be publicly available at https://github.com/peijie-chiu/QC-ResUNet.
KW - Automatic quality control
KW - Brain tumor segmentation
KW - Deep Learning
UR - http://www.scopus.com/inward/record.url?scp=85174686182&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-43901-8_17
DO - 10.1007/978-3-031-43901-8_17
M3 - Conference contribution
AN - SCOPUS:85174686182
SN - 9783031439001
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 173
EP - 182
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
A2 - Greenspan, Hayit
A2 - Greenspan, Hayit
A2 - Madabhushi, Anant
A2 - Mousavi, Parvin
A2 - Salcudean, Septimiu
A2 - Duncan, James
A2 - Syeda-Mahmood, Tanveer
A2 - Taylor, Russell
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 8 October 2023 through 12 October 2023
ER -