TY - JOUR
T1 - Public policy and economic dynamics of COVID-19 spread
T2 - A mathematical modeling study
AU - Goldsztejn, Uri
AU - Schwartzman, David
AU - Nehorai, Arye
N1 - Publisher Copyright:
© 2020 Goldsztejn et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/12
Y1 - 2020/12
N2 - With the COVID-19 pandemic infecting millions of people, large-scale isolation policies have been enacted across the globe. To assess the impact of isolation measures on deaths, hospitalizations, and economic output, we create a mathematical model to simulate the spread of COVID-19, incorporating effects of restrictive measures and segmenting the population based on health risk and economic vulnerability. Policymakers make isolation policy decisions based on current levels of disease spread and economic damage. For 76 weeks in a population of 330 million, we simulate a baseline scenario leaving strong isolation restrictions in place, rapidly reducing isolation restrictions for non-seniors shortly after outbreak containment, and gradually relaxing isolation restrictions for non-seniors. We use 76 weeks as an approximation of the time at which a vaccine will be available. In the baseline scenario, there are 235,724 deaths and the economy shrinks by 34.0%. With a rapid relaxation, a second outbreak takes place, with 525,558 deaths, and the economy shrinks by 32.3%. With a gradual relaxation, there are 262,917 deaths, and the economy shrinks by 29.8%. We also show that hospitalizations, deaths, and economic output are quite sensitive to disease spread by asymptomatic people. Strict restrictions on seniors with very gradual lifting of isolation for non-seniors results in a limited number of deaths and lesser economic damage. Therefore, we recommend this strategy and measures that reduce non-isolated disease spread to control the pandemic while making isolation economically viable.
AB - With the COVID-19 pandemic infecting millions of people, large-scale isolation policies have been enacted across the globe. To assess the impact of isolation measures on deaths, hospitalizations, and economic output, we create a mathematical model to simulate the spread of COVID-19, incorporating effects of restrictive measures and segmenting the population based on health risk and economic vulnerability. Policymakers make isolation policy decisions based on current levels of disease spread and economic damage. For 76 weeks in a population of 330 million, we simulate a baseline scenario leaving strong isolation restrictions in place, rapidly reducing isolation restrictions for non-seniors shortly after outbreak containment, and gradually relaxing isolation restrictions for non-seniors. We use 76 weeks as an approximation of the time at which a vaccine will be available. In the baseline scenario, there are 235,724 deaths and the economy shrinks by 34.0%. With a rapid relaxation, a second outbreak takes place, with 525,558 deaths, and the economy shrinks by 32.3%. With a gradual relaxation, there are 262,917 deaths, and the economy shrinks by 29.8%. We also show that hospitalizations, deaths, and economic output are quite sensitive to disease spread by asymptomatic people. Strict restrictions on seniors with very gradual lifting of isolation for non-seniors results in a limited number of deaths and lesser economic damage. Therefore, we recommend this strategy and measures that reduce non-isolated disease spread to control the pandemic while making isolation economically viable.
UR - http://www.scopus.com/inward/record.url?scp=85098962934&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0244174
DO - 10.1371/journal.pone.0244174
M3 - Article
C2 - 33351835
AN - SCOPUS:85098962934
SN - 1932-6203
VL - 15
JO - PloS one
JF - PloS one
IS - 12 December
M1 - e0244174
ER -