Abstract

Psilocybin (PSIL) is a psychedelic drug and a promising experimental therapeutic for many psychiatric conditions. Precision functional mapping (PFM) combines densely repeated resting state fMRI sampling and individual-specific network mapping to improve signal-to-noise ratio (SNR) and effect size in brain imaging research. We present a randomized cross-over study in which PFM was used to characterize acute and persistent effects of psilocybin or methylphenidate (MTP) on brain networks. Seven healthy volunteers (mean age 34.1 years, SD = 9.8; n = 3 females, n = 6 Caucasians) underwent (1) extensive baseline imaging, (2) imaging beginning 60–90 minutes after drug exposure, and (3) longitudinal imaging for up to two weeks after drug exposure. Four individuals also participated in an open-label PSIL replication protocol over 6 months later. This dataset includes resting state (using advanced high-resolution multi-echo fMRI), task fMRI, structural, and diffusion basis spectral imaging as well as assessments of subjective experience. We are releasing this unique dataset as a resource for neuroscientists to study the acute and persistent effects of PSIL and MTP on brain networks.

Original languageEnglish
Article number941
JournalScientific data
Volume12
Issue number1
DOIs
StatePublished - Dec 2025

Fingerprint

Dive into the research topics of 'Psilocybin’s acute and persistent brain effects: a precision imaging drug trial'. Together they form a unique fingerprint.

Cite this