TY - JOUR
T1 - Propensity score weighting methods for causal subgroup analysis with time-to-event outcomes
AU - Yang, Siyun
AU - Zhou, Ruiwen
AU - Li, Fan
AU - Thomas, Laine E.
N1 - Publisher Copyright:
© The Author(s) 2023.
PY - 2023/10
Y1 - 2023/10
N2 - Evaluating causal effects of an intervention in pre-specified subgroups is a standard goal in comparative effectiveness research. Despite recent advancements in causal subgroup analysis, research on time-to-event outcomes has been lacking. This article investigates the propensity score weighting method for causal subgroup survival analysis. We introduce two causal estimands, the subgroup marginal hazard ratio and subgroup restricted average causal effect, and provide corresponding propensity score weighting estimators. We analytically established that the bias of subgroup-restricted average causal effect is determined by subgroup covariate balance. Using extensive simulations, we compare the performance of various combinations of propensity score models (logistic regression, random forests, least absolute shrinkage and selection operator, and generalized boosted models) and weighting schemes (inverse probability weighting, and overlap weighting) for estimating the causal estimands. We find that the logistic model with subgroup-covariate interactions selected by least absolute shrinkage and selection operator consistently outperforms other propensity score models. Also, overlap weighting generally outperforms inverse probability weighting in terms of balance, bias and variance, and the advantage is particularly pronounced in small subgroups and/or in the presence of poor overlap. We applied the methods to the observational Comparing Options for Management: PAtient-centered REsults for Uterine Fibroids study to evaluate the causal effects of myomectomy versus hysterectomy on the time to disease recurrence in a number of pre-specified subgroups of patients with uterine fibroids.
AB - Evaluating causal effects of an intervention in pre-specified subgroups is a standard goal in comparative effectiveness research. Despite recent advancements in causal subgroup analysis, research on time-to-event outcomes has been lacking. This article investigates the propensity score weighting method for causal subgroup survival analysis. We introduce two causal estimands, the subgroup marginal hazard ratio and subgroup restricted average causal effect, and provide corresponding propensity score weighting estimators. We analytically established that the bias of subgroup-restricted average causal effect is determined by subgroup covariate balance. Using extensive simulations, we compare the performance of various combinations of propensity score models (logistic regression, random forests, least absolute shrinkage and selection operator, and generalized boosted models) and weighting schemes (inverse probability weighting, and overlap weighting) for estimating the causal estimands. We find that the logistic model with subgroup-covariate interactions selected by least absolute shrinkage and selection operator consistently outperforms other propensity score models. Also, overlap weighting generally outperforms inverse probability weighting in terms of balance, bias and variance, and the advantage is particularly pronounced in small subgroups and/or in the presence of poor overlap. We applied the methods to the observational Comparing Options for Management: PAtient-centered REsults for Uterine Fibroids study to evaluate the causal effects of myomectomy versus hysterectomy on the time to disease recurrence in a number of pre-specified subgroups of patients with uterine fibroids.
KW - Balance
KW - inverse probability weighting
KW - overlap weighting
KW - propensity score
KW - subgroup analysis
KW - survival analysis
UR - http://www.scopus.com/inward/record.url?scp=85167399917&partnerID=8YFLogxK
U2 - 10.1177/09622802231188517
DO - 10.1177/09622802231188517
M3 - Article
C2 - 37559475
AN - SCOPUS:85167399917
SN - 0962-2802
VL - 32
SP - 1919
EP - 1935
JO - Statistical Methods in Medical Research
JF - Statistical Methods in Medical Research
IS - 10
ER -