TY - JOUR
T1 - Prolonged oxidative stress inverts the cardiac force-frequency relation
T2 - Role of altered calcium handling and myofilament calcium responsiveness
AU - Luo, Jianzhu
AU - Xuan, Yu Ting
AU - Gu, Yan
AU - Prabhu, Sumanth D.
N1 - Funding Information:
This work was supported by AHA Established Investigator Grant 9740087N, the Jewish Hospital Foundation, NIH grants P01 ES011860-01A1 and HL65660, and a VA Merit Award.
PY - 2006/1
Y1 - 2006/1
N2 - The normally positive force- and Ca2+-frequency responses (FFR and CaFR) are inverted in heart failure (HF); whether oxidative stress contributes to these abnormalities is unknown. We evaluated the impact of acute and prolonged oxidative stress on contraction and Ca2+ handling in adult rat cardiomyocytes. Acute (30:min) exposure to H2O2 (100 μM) induced a twofold increase (P < 0.025) in intracellular oxyradicals together with contractile depression despite preservation of the Ca2+ transient and the FFR and CaFR to 3:Hz, indicating reduced myofilament Ca2+ responsiveness. In contrast, prolonged (24:h) exposure to the copper-zinc superoxide dismutase inhibitor diethyldithiocarbamic acid (DDC, 1 μM) similarly augmented oxyradicals but also increased cell size, and contraction and Ca2+ transient duration (P < 0.025). DDC-treated myocytes displayed inverted FFRs and attenuated (though still positive) CaFRs as compared to control, indicating reduced myofilament Ca 2+ responsiveness coupled with altered Ca2+ handling. Protein levels of the Na+-Ca2+ exchanger (NCX), sarcoplasmic reticular (SR) Ca2+ ATPase (SERCA2), and serine-16 phosphorylated phospholamban (pSer16-PLB) were increased (P < 0.025), whereas dihydropyridine receptor abundance was decreased. Total PLB and ryanodine receptor protein expression were unchanged. Caffeine-induced Ca2+ release showed increased NCX activity (P < 0.025) without changes in total releasable SR Ca2+, suggesting compensatory changes in SERCA2 and pSer16-PLB to maintain SR Ca2+ load. The superoxide scavenger Tiron attenuated these effects. Thus, acute oxyradical exposure rapidly depresses myofibrillar Ca2+ responsiveness. Prolonged oxidative stress further induces alterations in Ca2+ handling that combined with extant reductions in myofibrillar responsiveness invert the FFR. With regard to Ca 2+ handling, reduced transsarcolemmal Ca2+ flux rather than reduced SR Ca2+ uptake was the primary determinant of a negative FFR. Analogous changes may be operative in HF, a state characterized by both oxidative stress and Ca2+ dysregulation.
AB - The normally positive force- and Ca2+-frequency responses (FFR and CaFR) are inverted in heart failure (HF); whether oxidative stress contributes to these abnormalities is unknown. We evaluated the impact of acute and prolonged oxidative stress on contraction and Ca2+ handling in adult rat cardiomyocytes. Acute (30:min) exposure to H2O2 (100 μM) induced a twofold increase (P < 0.025) in intracellular oxyradicals together with contractile depression despite preservation of the Ca2+ transient and the FFR and CaFR to 3:Hz, indicating reduced myofilament Ca2+ responsiveness. In contrast, prolonged (24:h) exposure to the copper-zinc superoxide dismutase inhibitor diethyldithiocarbamic acid (DDC, 1 μM) similarly augmented oxyradicals but also increased cell size, and contraction and Ca2+ transient duration (P < 0.025). DDC-treated myocytes displayed inverted FFRs and attenuated (though still positive) CaFRs as compared to control, indicating reduced myofilament Ca 2+ responsiveness coupled with altered Ca2+ handling. Protein levels of the Na+-Ca2+ exchanger (NCX), sarcoplasmic reticular (SR) Ca2+ ATPase (SERCA2), and serine-16 phosphorylated phospholamban (pSer16-PLB) were increased (P < 0.025), whereas dihydropyridine receptor abundance was decreased. Total PLB and ryanodine receptor protein expression were unchanged. Caffeine-induced Ca2+ release showed increased NCX activity (P < 0.025) without changes in total releasable SR Ca2+, suggesting compensatory changes in SERCA2 and pSer16-PLB to maintain SR Ca2+ load. The superoxide scavenger Tiron attenuated these effects. Thus, acute oxyradical exposure rapidly depresses myofibrillar Ca2+ responsiveness. Prolonged oxidative stress further induces alterations in Ca2+ handling that combined with extant reductions in myofibrillar responsiveness invert the FFR. With regard to Ca 2+ handling, reduced transsarcolemmal Ca2+ flux rather than reduced SR Ca2+ uptake was the primary determinant of a negative FFR. Analogous changes may be operative in HF, a state characterized by both oxidative stress and Ca2+ dysregulation.
KW - Calcium
KW - Excitation-contraction coupling
KW - Myocardial contraction
KW - Oxidant stress
UR - http://www.scopus.com/inward/record.url?scp=29444458551&partnerID=8YFLogxK
U2 - 10.1016/j.yjmcc.2005.09.013
DO - 10.1016/j.yjmcc.2005.09.013
M3 - Article
C2 - 16288776
AN - SCOPUS:29444458551
SN - 0022-2828
VL - 40
SP - 64
EP - 75
JO - Journal of Molecular and Cellular Cardiology
JF - Journal of Molecular and Cellular Cardiology
IS - 1
ER -