TY - JOUR
T1 - Prolonged or perpetual growth of replacement teeth in the rock hyrax
AU - Smith, Timothy D.
AU - Bento Da Costa, Laura
AU - Downing, Sarah E.
AU - Bonar, Christopher J.
AU - Burrows, Anne M.
AU - Prufrock, Kristen A.
AU - Vinyard, Christopher J.
AU - DeLeon, Valerie B.
N1 - Publisher Copyright:
© 2024 American Association for Anatomy.
PY - 2025
Y1 - 2025
N2 - Tusks are ever-growing teeth present in mammals of the clade Paenungulata. Unlike the perpetually growing incisors of rodents, tusks are not used in mastication, and in at least some paenungulatans, the tusk is composed of dentin alone in adults. Few studies have provided tissue-level information on tusks of adult paenungulatans with embedding techniques that identify epithelial and other soft tissues. In order to examine the mineralized tissues as well as the cells that form teeth, we studied a single, subadult rock hyrax (Procavia capensis) using microCT and paraffin histology with traditional staining as well as RUNX2 immunohistochemistry, and compared its teeth to scans of adult hyraxes. Three-dimensional reconstructions from microCT volumes revealed that the tusk of this specimen is the only fully erupted replacement tooth, the first adult premolar (P1) is starting to erupt, and the first permanent molar (M1) is fully erupted, whereas all other replacement teeth and M2 remain in crypts. The tusk has a thin layer of enamel on its dorsal side; this is confirmed by histology. All deciduous premolars still possess roots that are in the process of resorption. Amelogenesis has progressed to maturation or nearly so in P1–P3. Notable histological characteristics of replacement premolars include the lack of a stellate reticulum in all except P4, and expression of RUNX2 in ameloblasts, a marker which is expressed by ameloblasts at all stages of amelogenesis. Since the pulp chambers of replacement premolars are relatively large compared to adults, a lengthy time in crypts may be important for dentin production. The results confirm that the hyrax has thin enamel on tusks, supporting the hypothesis that enamel is of limited importance for non-feeding behaviors.
AB - Tusks are ever-growing teeth present in mammals of the clade Paenungulata. Unlike the perpetually growing incisors of rodents, tusks are not used in mastication, and in at least some paenungulatans, the tusk is composed of dentin alone in adults. Few studies have provided tissue-level information on tusks of adult paenungulatans with embedding techniques that identify epithelial and other soft tissues. In order to examine the mineralized tissues as well as the cells that form teeth, we studied a single, subadult rock hyrax (Procavia capensis) using microCT and paraffin histology with traditional staining as well as RUNX2 immunohistochemistry, and compared its teeth to scans of adult hyraxes. Three-dimensional reconstructions from microCT volumes revealed that the tusk of this specimen is the only fully erupted replacement tooth, the first adult premolar (P1) is starting to erupt, and the first permanent molar (M1) is fully erupted, whereas all other replacement teeth and M2 remain in crypts. The tusk has a thin layer of enamel on its dorsal side; this is confirmed by histology. All deciduous premolars still possess roots that are in the process of resorption. Amelogenesis has progressed to maturation or nearly so in P1–P3. Notable histological characteristics of replacement premolars include the lack of a stellate reticulum in all except P4, and expression of RUNX2 in ameloblasts, a marker which is expressed by ameloblasts at all stages of amelogenesis. Since the pulp chambers of replacement premolars are relatively large compared to adults, a lengthy time in crypts may be important for dentin production. The results confirm that the hyrax has thin enamel on tusks, supporting the hypothesis that enamel is of limited importance for non-feeding behaviors.
KW - amelogenesis
KW - dentition
KW - Hyracoidea
KW - ontogeny
UR - http://www.scopus.com/inward/record.url?scp=85214126290&partnerID=8YFLogxK
U2 - 10.1002/ar.25625
DO - 10.1002/ar.25625
M3 - Article
C2 - 39739374
AN - SCOPUS:85214126290
SN - 1932-8486
JO - Anatomical Record
JF - Anatomical Record
ER -