Abstract

Background: We aimed to evaluate the clinical outcomes of molecular glioblastoma (mGBM) as compared to histological GBM (hGBM) and to determine the prognostic impact of TERT mutation, EGFR amplification, and CDKN2A/B deletion on isocitrate dehydrogenase (IDH)-wildtype GBM. Methods: IDH-wildtype GBM patients treated with radiation therapy (RT) between 2012 and 2019 were retrospectively analyzed. mGBM was defined as grade II-III IDH-wildtype astrocytoma without histological features of GBM but with one of the following molecular alterations: TERT mutation, EGFR amplification, or combination of whole chromosome 7 gain and whole chromosome 10 loss. Overall survival (OS) and progression-free survival (PFS) were calculated from RT and analyzed using the Kaplan-Meier method. Multivariable analysis (MVA) was performed using Cox regression to identify independent predictors of OS and PFS. Results: Of the 367 eligible patients, the median follow-up was 11.7 months. mGBM and hGBM did not have significantly different OS (median: 16.6 vs 13.5 months, respectively, P =. 16), nor PFS (median: 11.7 vs 7.3 months, respectively, P =. 08). However, mGBM was associated with better OS (hazard ratio [HR] 0.50, 95% CI 0.29-0.88) and PFS (HR 0.43, 95% CI 0.26-0.72) than hGBM after adjusting for known prognostic factors on MVA. CDKN2A/B deletion was associated with worse OS (HR 1.57, 95% CI 1.003-2.46) and PFS (HR 1.57, 95% CI 1.04-2.36) on MVA, but TERT mutation and EGFR amplification were not. Conclusion: Criteria for mGBM may require further refinement and validation. CDKN2A/B deletion, but not TERT mutation or EGFR amplification, may be an independent prognostic biomarker for IDH-wildtype GBM patients.

Original languageEnglish
Article numbervdaa126
JournalNeuro-Oncology Advances
Volume2
Issue number1
DOIs
StatePublished - Jan 1 2020

Keywords

  • CDKN2A/B
  • cIMPACT-NOW
  • EGFR
  • Glioblastoma
  • TERT

Fingerprint

Dive into the research topics of 'Prognostic impact of CDKN2A/B deletion, TERT mutation, and EGFR amplification on histological and molecular IDH-wildtype glioblastoma'. Together they form a unique fingerprint.

Cite this