TY - JOUR
T1 - Prioritization of Drug Targets for Neurodegenerative Diseases by Integrating Genetic and Proteomic Data From Brain and Blood
AU - International FTD-Genomics Consortium
AU - Ge, Yi Jun
AU - Ou, Ya Nan
AU - Deng, Yue Ting
AU - Wu, Bang Sheng
AU - Yang, Liu
AU - Zhang, Ya Ru
AU - Chen, Shi Dong
AU - Huang, Yu Yuan
AU - Dong, Qiang
AU - Tan, Lan
AU - Yu, Jin Tai
AU - Ferrari, Raffaele
AU - Hernandez, Dena G.
AU - Nalls, Michael A.
AU - Rohrer, Jonathan D.
AU - Ramasamy, Adaikalavan
AU - Kwok, John B.J.
AU - Dobson-Stone, Carol
AU - Brooks, William S.
AU - Schofield, Peter R.
AU - Halliday, Glenda M.
AU - Hodges, John R.
AU - Piguet, Olivier
AU - Bartley, Lauren
AU - Thompson, Elizabeth
AU - Haan, Eric
AU - Hernández, Isabel
AU - Ruiz, Agustín
AU - Boada, Mercè
AU - Borroni, Barbara
AU - Padovani, Alessandro
AU - Cruchaga, Carlos
AU - Cairns, Nigel J.
AU - Benussi, Luisa
AU - Binetti, Giuliano
AU - Ghidoni, Roberta
AU - Forloni, Gianluigi
AU - Galimberti, Daniela
AU - Fenoglio, Chiara
AU - Serpente, Maria
AU - Scarpini, Elio
AU - Clarimón, Jordi
AU - Lleó, Alberto
AU - Blesa, Rafael
AU - Waldö, Maria Landqvist
AU - Nilsson, Karin
AU - Nilsson, Christer
AU - Mackenzie, Ian R.A.
AU - Hsiung, Ging Yuek R.
AU - Mann, David M.A.
AU - Grafman, Jordan
AU - Morris, Christopher M.
AU - Attems, Johannes
AU - Griffiths, Timothy D.
AU - McKeith, Ian G.
AU - Thomas, Alan J.
AU - Pietrini, P.
AU - Huey, Edward D.
AU - Wassermann, Eric M.
AU - Baborie, Atik
AU - Jaros, Evelyn
AU - Tierney, Michael C.
AU - Pastor, Pau
AU - Razquin, Cristina
AU - Ortega-Cubero, Sara
AU - Alonso, Elena
AU - Perneczky, Robert
AU - Diehl-Schmid, Janine
AU - Alexopoulos, Panagiotis
AU - Kurz, Alexander
AU - Rainero, Innocenzo
AU - Rubino, Elisa
AU - Pinessi, Lorenzo
AU - Rogaeva, Ekaterina
AU - St. George-Hyslop, Peter
AU - Rossi, Giacomina
AU - Tagliavini, Fabrizio
AU - Giaccone, Giorgio
AU - Rowe, James B.
AU - Schlachetzki, Johannes C.M.
AU - Uphill, James
AU - Collinge, John
AU - Mead, Simon
AU - Danek, Adrian
AU - Van Deerlin, Vivianna M.
AU - Grossman, Murray
AU - Trojanowski, John Q.
AU - van der Zee, Julie
AU - Deschamps, William
AU - Van Langenhove, Tim
AU - Cruts, Marc
AU - Van Broeckhoven, Christine
AU - Cappa, Stefano F.
AU - Le Ber, Isabelle
AU - Hannequin, Didier
AU - Golfier, Véronique
AU - Vercelletto, Martine
AU - Brice, Alexis
AU - Nacmias, Benedetta
AU - Sorbi, Sandro
AU - Bagnoli, Silvia
AU - Piaceri, Irene
AU - Nielsen, Jørgen E.
AU - Hjermind, Lena E.
AU - Riemenschneider, Matthias
AU - Mayhaus, Manuel
AU - Ibach, Bernd
AU - Gasparoni, Gilles
AU - Pichler, Sabrina
AU - Gu, Wei
AU - Rossor, Martin N.
AU - Fox, Nick C.
AU - Warren, Jason D.
AU - Spillantini, Maria Grazia
AU - Morris, Huw R.
AU - Rizzu, Patrizia
AU - Heutink, Peter
AU - Snowden, Julie S.
AU - Rollinson, Sara
AU - Richardson, Anna
AU - Gerhard, Alexander
AU - Bruni, Amalia C.
AU - Maletta, Raffaele
AU - Frangipane, Francesca
AU - Cupidi, Chiara
AU - Bernardi, Livia
AU - Anfossi, Maria
AU - Gallo, Maura
AU - Conidi, Maria Elena
AU - Smirne, Nicoletta
AU - Rademakers, Rosa
AU - Baker, Matt
AU - Dickson, Dennis W.
AU - Graff-Radford, Neill R.
AU - Petersen, Ronald C.
AU - Knopman, David
AU - Josephs, Keith A.
AU - Boeve, Bradley F.
AU - Parisi, Joseph E.
AU - Seeley, William W.
AU - Miller, Bruce L.
AU - Karydas, Anna M.
AU - Rosen, Howard
AU - van Swieten, John C.
AU - Dopper, Elise G.P.
AU - Seelaar, Harro
AU - Pijnenburg, Yolande A.L.
AU - Scheltens, Philip
AU - Logroscino, Giancarlo
AU - Capozzo, Rosa
AU - Novelli, Valeria
AU - Puca, Annibale A.
AU - Franceschi, Massimo
AU - Postiglione, Alfredo
AU - Milan, Graziella
AU - Sorrentino, Paolo
AU - Kristiansen, Mark
AU - Chiang, Huei Hsin
AU - Graff, Caroline
AU - Pasquier, Florence
AU - Rollin, Adeline
AU - Deramecourt, Vincent
AU - Lebert, Florence
AU - Kapogiannis, Dimitrios
AU - Ferrucci, Luigi
AU - Pickering-Brown, Stuart
AU - Singleton, Andrew B.
AU - Hardy, John
AU - Momeni, Parastoo
N1 - Funding Information:
J-TY was supported by the Science and Technology Innovation 2030 Major Projects (Grant No. 2022ZD0211600), National Natural Science Foundation of China (Grant No. 82071201 ), Shanghai Municipal Science and Technology Major Project (Grant No. 2018SHZDZX01), Research Start-up Fund of Huashan Hospital (Grant No. 2022QD002 ), Excellence 2025 Talent Cultivation Program at Fudan University (Grant No. 3030277001 ), Zhangjiang Lab, Tianqiao and Chrissy Chen Institute, and State Key Laboratory of Neurobiology and Frontiers Center for Brain Science of Ministry of Education, Fudan University. LT was supported by National Natural Science Foundation of China (Grant No. 81971032).
Funding Information:
J-TY was supported by the Science and Technology Innovation 2030 Major Projects (Grant No. 2022ZD0211600), National Natural Science Foundation of China (Grant No. 82071201), Shanghai Municipal Science and Technology Major Project (Grant No. 2018SHZDZX01), Research Start-up Fund of Huashan Hospital (Grant No. 2022QD002), Excellence 2025 Talent Cultivation Program at Fudan University (Grant No. 3030277001), Zhangjiang Lab, Tianqiao and Chrissy Chen Institute, and State Key Laboratory of Neurobiology and Frontiers Center for Brain Science of Ministry of Education, Fudan University. LT was supported by National Natural Science Foundation of China (Grant No. 81971032). We thank all study participants and their families, without whom this research would not have been possible. We thank all original authors of the included studies for their wonderful work. We thank the ROSMAP study, the Banner Sun Health Research Institute cohort, the Washington University cohort, the INTERVAL study, the AGES Reykjavik study, the KORA study, the GTEx project, Schwartzentruber and colleagues, Chia and colleagues, the Project MinE, the International FTD-Genetics Consortium, the International Multiple Sclerosis Genetics Consortium, and the International Parkinson's Disease Genomics Consortium for sharing summary data. We thank De-Qiang Li for his valuable contribution to data processing. Additional acknowledgments can be found in the Supplement. GWAS summary statistics of QTLs and neurodegenerative diseases are available from the peer-reviewed articles or the corresponding authors on request. Other phenotypes of potential side effects are available from the MRC IEU OpenGWAS Project (https://gwas.mrcieu.ac.uk/) and the MR-Base (https://www.mrbase.org/) platform. The PhenoScanner database is available online (http://www.phenoscanner.medschl.cam.ac.uk/). All data generated from this study are available in the Supplement or from the corresponding author on reasonable request. The authors report no biomedical financial interests or potential conflicts of interest.
Publisher Copyright:
© 2022 Society of Biological Psychiatry
PY - 2023/5/1
Y1 - 2023/5/1
N2 - Background: Neurodegenerative diseases are among the most prevalent and devastating neurological disorders, with few effective prevention and treatment strategies. We aimed to integrate genetic and proteomic data to prioritize drug targets for neurodegenerative diseases. Methods: We screened human proteomes through Mendelian randomization to identify causal mediators of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, frontotemporal dementia, and Lewy body dementia. For instruments, we used brain and blood protein quantitative trait loci identified from one genome-wide association study with 376 participants and another with 3301 participants, respectively. Causal associations were subsequently validated by sensitivity analyses and colocalization. The safety and druggability of identified targets were also evaluated. Results: Our analyses showed targeting BIN1, GRN, and RET levels in blood as well as ACE, ICA1L, MAP1S, SLC20A2, and TOM1L2 levels in brain might reduce Alzheimer's disease risk, while ICA1L, SLC20A2, and TOM1L2 were not recommended as prioritized drugs due to the identified potential side effects. Brain CD38, DGKQ, GPNMB, and SEC23IP were candidate targets for Parkinson's disease. Among them, GPNMB was the most promising target for Parkinson's disease with their causal relationship evidenced by studies on both brain and blood tissues. Interventions targeting FCRL3, LMAN2, and MAPK3 in blood and DHRS11, FAM120B, SHMT1, and TSFM in brain might affect multiple sclerosis risk. The risk of amyotrophic lateral sclerosis might be reduced by medications targeting DHRS11, PSMB3, SARM1, and SCFD1 in brain. Conclusions: Our study prioritized 22 proteins as targets for neurodegenerative diseases and provided preliminary evidence for drug development. Further studies are warranted to validate these targets.
AB - Background: Neurodegenerative diseases are among the most prevalent and devastating neurological disorders, with few effective prevention and treatment strategies. We aimed to integrate genetic and proteomic data to prioritize drug targets for neurodegenerative diseases. Methods: We screened human proteomes through Mendelian randomization to identify causal mediators of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, frontotemporal dementia, and Lewy body dementia. For instruments, we used brain and blood protein quantitative trait loci identified from one genome-wide association study with 376 participants and another with 3301 participants, respectively. Causal associations were subsequently validated by sensitivity analyses and colocalization. The safety and druggability of identified targets were also evaluated. Results: Our analyses showed targeting BIN1, GRN, and RET levels in blood as well as ACE, ICA1L, MAP1S, SLC20A2, and TOM1L2 levels in brain might reduce Alzheimer's disease risk, while ICA1L, SLC20A2, and TOM1L2 were not recommended as prioritized drugs due to the identified potential side effects. Brain CD38, DGKQ, GPNMB, and SEC23IP were candidate targets for Parkinson's disease. Among them, GPNMB was the most promising target for Parkinson's disease with their causal relationship evidenced by studies on both brain and blood tissues. Interventions targeting FCRL3, LMAN2, and MAPK3 in blood and DHRS11, FAM120B, SHMT1, and TSFM in brain might affect multiple sclerosis risk. The risk of amyotrophic lateral sclerosis might be reduced by medications targeting DHRS11, PSMB3, SARM1, and SCFD1 in brain. Conclusions: Our study prioritized 22 proteins as targets for neurodegenerative diseases and provided preliminary evidence for drug development. Further studies are warranted to validate these targets.
KW - Drug discovery
KW - Genetics
KW - Mendelian randomization
KW - Neurodegenerative disease
KW - Omics
KW - Proteomics
UR - http://www.scopus.com/inward/record.url?scp=85148707123&partnerID=8YFLogxK
U2 - 10.1016/j.biopsych.2022.11.002
DO - 10.1016/j.biopsych.2022.11.002
M3 - Article
C2 - 36759259
AN - SCOPUS:85148707123
SN - 0006-3223
VL - 93
SP - 770
EP - 779
JO - Biological Psychiatry
JF - Biological Psychiatry
IS - 9
ER -