TY - JOUR
T1 - Preparation and biological evaluation of copper-64-labeled Tyr 3-octreotate using a cross-bridged macrocyclic chelator
AU - Sprague, Jennifer E.
AU - Peng, Yijie
AU - Sun, Xiankai
AU - Weisman, Gary R.
AU - Wong, Edward H.
AU - Achilefu, Samuel
AU - Anderson, Carolyn J.
PY - 2004/12/15
Y1 - 2004/12/15
N2 - Purpose: Somatostatin receptors (SSTr) are expressed on many neuroendocrine tumors, and several radiotracers have been developed for imaging these types of tumors. For this reason, peptide analogues of somatostatin have been well characterized. Copper-64 (t1/2 = 12.7 hours), a positron emitter suitable for positron emission tomography (PET) imaging, was shown recently to have improved in vivo clearance properties when dictated by the cross-bridged tetraazamacrocycle 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicydo(6.6.2) hexadecane (CB-TE2A) compared with 1,4,8,11-tetraazacyclotetradecane-1,4,8,11- tetraacetic acid (TETA). Experimental Design: CB-TE2A and TETA were conjugated to the somatostatin analogue tyrosine-3-octreotate (Y3-TATE) for evaluation of CB-TE2A as a bifunctional chelator of 64Cu. The in vitro affinity of each compound for SSTr was determined using a homologous competitive binding assay. In vivo characteristics of both radiolabeled compounds were examined in biodistribution and microPET studies of AR42J tumor-bearing rats. Results: Cu-CB-TE2A-Y3-TATE (Kd = 1.7 nmol/L) and Cu-TETA-Y3-TATE (K d = 0.7 nmol/L) showed similar affinities for AR42J derived SSTr. In biodistribution studies, nonspecific uptake in blood and liver was lower for 64Cu-CB-TE2A-Y3-TATE. Differences increased with time such that, at 4 hours, blood uptake was 4.3-fold higher and liver uptake was 2.4-fold higher for 64Cu-TETA-Y3-TATE than for 64Cu-CB-TE2A-Y3-TATE. In addition, 4.4-times greater tumor uptake was detected with 64Cu-CB- TE2A-Y3-TATE than with 64Cu-TETA-Y3-TATE at 4 hours postinjection. MicroPET imaging yielded similar results. Conclusions: CB-TE2A appears to be a superior in vivo bifunctional chelator of 64Cu for use in molecular imaging by PET or targeted radiotherapy due to both improved nontarget organ clearance and higher target organ uptake of 64Cu-CB-TE2A-Y3-TATE compared with 64Cu-TETA-Y3-TATE.
AB - Purpose: Somatostatin receptors (SSTr) are expressed on many neuroendocrine tumors, and several radiotracers have been developed for imaging these types of tumors. For this reason, peptide analogues of somatostatin have been well characterized. Copper-64 (t1/2 = 12.7 hours), a positron emitter suitable for positron emission tomography (PET) imaging, was shown recently to have improved in vivo clearance properties when dictated by the cross-bridged tetraazamacrocycle 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicydo(6.6.2) hexadecane (CB-TE2A) compared with 1,4,8,11-tetraazacyclotetradecane-1,4,8,11- tetraacetic acid (TETA). Experimental Design: CB-TE2A and TETA were conjugated to the somatostatin analogue tyrosine-3-octreotate (Y3-TATE) for evaluation of CB-TE2A as a bifunctional chelator of 64Cu. The in vitro affinity of each compound for SSTr was determined using a homologous competitive binding assay. In vivo characteristics of both radiolabeled compounds were examined in biodistribution and microPET studies of AR42J tumor-bearing rats. Results: Cu-CB-TE2A-Y3-TATE (Kd = 1.7 nmol/L) and Cu-TETA-Y3-TATE (K d = 0.7 nmol/L) showed similar affinities for AR42J derived SSTr. In biodistribution studies, nonspecific uptake in blood and liver was lower for 64Cu-CB-TE2A-Y3-TATE. Differences increased with time such that, at 4 hours, blood uptake was 4.3-fold higher and liver uptake was 2.4-fold higher for 64Cu-TETA-Y3-TATE than for 64Cu-CB-TE2A-Y3-TATE. In addition, 4.4-times greater tumor uptake was detected with 64Cu-CB- TE2A-Y3-TATE than with 64Cu-TETA-Y3-TATE at 4 hours postinjection. MicroPET imaging yielded similar results. Conclusions: CB-TE2A appears to be a superior in vivo bifunctional chelator of 64Cu for use in molecular imaging by PET or targeted radiotherapy due to both improved nontarget organ clearance and higher target organ uptake of 64Cu-CB-TE2A-Y3-TATE compared with 64Cu-TETA-Y3-TATE.
UR - http://www.scopus.com/inward/record.url?scp=11144228601&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-04-1084
DO - 10.1158/1078-0432.CCR-04-1084
M3 - Article
C2 - 15623652
AN - SCOPUS:11144228601
SN - 1078-0432
VL - 10
SP - 8674
EP - 8682
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 24
ER -